
Thesis to get the degree of a master of computer
science

Behavioral Biometric Authentication
in Human-Computer Interaction

John Vincent Monaco

January 2014

Pace University
Seidenberg School of Computer Science and Information

Systems

Dean
Dr. Amar Gupta

Referees
Dr. Charles Tappert

Contents

Abstract 1

1. Introduction 3
1.1. Authentication . 3

1.1.1. Types of threats . 3
1.2. Behavioral biometrics . 4

1.2.1. Human-computer interaction 4
1.2.2. Cognition . 4
1.2.3. Sequence Classification . 5
1.2.4. Sequence source identification 6
1.2.5. Authentication model evaluation 6

1.3. Structure of this document . 7

2. Experimental Data 9
2.1. Overview . 9
2.2. Keystroke and mouse . 9

2.2.1. Long free-text and fixed-text 11
2.2.2. Short Fixed keystroke . 12
2.2.3. Multimodal tasks . 13

2.3. Mobile . 16
2.4. Additional datasets . 18

2.4.1. Keystroke RTI . 18
2.4.2. Web search history . 18
2.4.3. Eye movement . 18

3. Authentication Model 21
3.1. Introduction . 21
3.2. Dichotomy model . 21
3.3. Model validation . 23

3.3.1. Receiver operating characteristic (ROC) curve 24
3.3.2. Biometric menagerie . 25

4. Keystroke 27
4.1. Introduction . 27

4.1.1. Related work . 27
4.1.2. Other factors to consider . 28

i

Contents Contents

4.1.3. Placement on Newell’s Time Scale 29
4.1.4. Keystroke event models . 29

4.2. Statistical features . 30
4.2.1. Features for fixed-text . 31

4.3. Fallback . 31
4.3.1. Feature correlation . 32
4.3.2. Correlation based fallback table 36

4.4. Bigram frequency . 40
4.5. Experimental Results . 41

4.5.1. Input type . 41
4.5.2. Free text population size and input length 42
4.5.3. Short fixed text . 47

4.6. Conclusion . 49

5. Stylometry 53
5.1. Introduction . 53
5.2. Features . 55
5.3. Experimental results: online test-takers 55
5.4. Literature authorship . 56

5.4.1. Data collection . 56
5.4.2. Experimental results . 57

5.5. Conclusion . 59

6. Mouse 61
6.1. Overview . 61
6.2. Preprocessing . 61
6.3. Sequence segmentation . 62
6.4. Features . 64

6.4.1. Motion . 64
6.4.2. Click . 68
6.4.3. Scroll . 69

6.5. Experimental results . 70
6.5.1. Fixed motion tasks . 70
6.5.2. Unrestrained motion in a single domain 71
6.5.3. Unrestrained motion in multiple domains 72

6.6. Conclusion . 72

Acknowledgments 75

A. Keystroke features 77

B. Stylometry features 79

C. Linear regression fallback functions 81

ii

Contents

D. Summary of Prior Authorship Attribution Stylometry Studies 83
D.1. Stylometry prior work references . 83

Bibliography 87

iii

Abstract

The goal of this thesis is to present a model for authenticating users via interaction
with a computer. In particular, the sequence of events generated when a user moves
a mouse or types on a keyboard are considered. Such sequences can be observed
when a user interacts with a standard desktop or laptop computer. Being able to
authenticate a user by the interaction that occurs with an application can allow for
a robust user-friendly identity management solution.

1

1. Introduction

As humans and machines become more tightly integrated it is important for the
machine to be aware of who it is interacting with. Acknowledging the identity of
the operator allows the machine to act in a more intelligent way and is the first
step to responding appropriately to the user’s actions. It may grant or deny access
to certain portions of a program, adapt to the user’s behavior, or account for and
correct user errors.

The problem of confirming the identity of a person is not so simple. Humans perform
this function effortlessly, making judgments based on inputs to nearly every sense.
A person may be recognized by a combination of their appearance, body language,
voice, and smell. It is even possible to recognize someone after their appearance
has changed drastically or years later after their voice and body have aged. The
temporal aspect of confirming someone’s identity is just another challenge that a
machine must account for.

1.1. Authentication

The need for a consistent and accurate means of authentication is apparent as people
place more trust in machines. Authentication should be measurably resistant to
threats [42]. Biometrics offers a way of authentication in which a confidence can
be placed, since the expected number of false acceptances and false rejects can
be estimated. Behavioral biometrics are harder to capture and reproduce than
physiological biometrics although they are also more difficult quantify.

1.1.1. Types of threats

A biometric authentication system may be interacted with in many different ways[36].

Positive claim of identity The user claims to be known by the system

Negative claim of identity The user claims to not be known by the system

Genuine claim of identity The claimed identity is authentic

Impostor claim of identity The user makes a false claim of identity, pretending to
be someone else

3

Chapter 1 Introduction

We are only interested in positive claims of identity scenarios, where a user makes
either a genuine or impostor claim of identity. In our system, a negative claim of
identity would deny access to the user by default. All simulated attacks are zero-
effort attacks, in contrast to a statistical attack, which exploits the probable range
of feature values to gain access to a BAS.

1.2. Behavioral biometrics

Biometric authentication has now become mainstream as the techniques have ma-
tured over the past several decades. It is used in law enforcement, border control,
and personal device access. Simply put, it is the recognition of a human by some
characteristic. There are many different biometrics that can be measured, and new
ones are still being proposed. Various biometric measures may be considered either
physiological or behavioral. This classification is not strict and some biometrics may
fall into either category. A better ontology would be to consider a biometric as being
either static or dynamic. A static biometric would be a fingerprint or a picture of
someone’s face. Dynamic biometrics change over time and include voice, This thesis
deal with biometrics which are dynamic in nature.
Within dynamic biometrics, another important distinction is made. Some biometrics
involve human-computer interaction (HCI), such as typing or operating a mouse,
while others do not (non-HCI), such as gait recognition and voice. This thesis is
mainly concerned with dynamic biometrics which involve HCI, although a few non-
HCI biometrics are investigated.

1.2.1. Human-computer interaction

Some behavioral biometrics require the interaction between a human and computer
interface. Behavioral biometrics may be placed into two categories: those that
modify the state of the environment (active) and those that leave the environment
unchanged from the user’s perspective (passive). Gait would be an example of be-
havior in a static environment, while typing and moving a mouse require interaction
and produce feedback for the user.

1.2.2. Cognition

Various behavioral biometrics rely more or less heavily on cognition. In Figure 1.1,
the keystroke, mouse, and stylometry biometrics are placed in a hierarchy based in-
tuitively on the cognitive load each one induces. It will be shown that the biometrics
operating at the top of the hierarchy are generally more difficult to quantify.
According to Newell’s time scale in Figure 1.2, human behavior may fall into any one
of 4 categories. Quantifying behavior in each category comes with a varying degree

4

1.2 Behavioral biometrics

Figure 1.1.: Behavioral biometric hierarchy

of difficulty, and understanding behavior across all categories will involve analyzing
sequences of events with different levels of granularity. A working model will likely
require a hierarchical solution, with the understanding that behaviors at the lower
levels form the base of a pyramid of behavioral biometrics. Human cognition lies
somewhere in the middle of the pyramid, with physiological traits at the bottom
and long term trends at the top. This suggests that better results may be achieved
by focusing on the bottom on top of the pyramid, since action requiring a high level
of cognition are difficult to predict.

Figure 1.2.: Newell’s Time Scale [41]

1.2.3. Sequence Classification

Behavioral biometrics makes heavy use of sequence classification techniques from
machine learning. There are primarily 3 ways in which sequences are classified [55]:

5

Chapter 1 Introduction

• Feature-based (extract features, followed by conventional pattern recognition
methods)

• Distance-based (using a distance function between sequences)
• Model-based (statistical models, such as hidden markov model)

This document is mostly concerned with the feature-based approach, and introduces
a hybrid of feature and distance-based approaches.

1.2.4. Sequence source identification

A sequence S is comprised of events E which occur over time. Each event is instan-
taneous and occurs at time t belongs to a class C as defined by an identity function
f which maps the events to the class space. An event may also have a vector of
attributes A which describe the state of the system at the time of the event.
There are two types of features which may be used to identify the source of a
sequence:

1. State features, which describe the attributes of an event class
2. Transition features, which are time dependent features that describe the tran-

sitioning from state {S1 → S2 → S3...} in the sequence. Such features might
include the velocity, acceleration, jerk, or higher order derivatives of the se-
quence.

The goal of authentication and identification in behavioral biometrics is identifying
the source of the observed sequence. This is a subtle difference from many sequence
classification tasks, since only the source of the sequence is of interest. The source is
the user and the sequence consists of the events that occur during human-computer
interaction. On a standard desktop, sequences will be made up of keystroke and
mouse events. On a touchscreen mobile device, the events depend on the sensors
available, and usually consist of touch, acceleration, sound, pressure, etc.

1.2.5. Authentication model evaluation

There are many facets to evaluating a biometric model. While we are interested
mostly in the technical performance,[36] define other aspects which should be con-
sidered:

• Reliability, availability and maintainability
• Vulnerability
• Security

6

1.3 Structure of this document

• User acceptance
• Human factors
• Cost/benefit
• Privacy regulation compliance

In several experiments, the individuality of users will be examined. It will be show
that for some biometrics, the error rate for individual users is vastly different. This
leads to the conclusion that a system which authenticates every user under the same
parameters may not be optimal.

1.3. Structure of this document

With the exception of chapter 2, each chapter in the document is mostly self con-
tained. The authentication model used in chapters 4, 5, and 6 is described in chapter
2. Chapter 3 covers the experimental data used in the experiments with some notes
on the implementation of data collection software. Chapters 4 and 5 describe several
studies and keystroke and stylometry biometrics, while chapter 6 include mouse and
multimodal experimental results.

7

2. Experimental Data

2.1. Overview

A framework for data collection was developed and used to collect data from par-
ticipants. The framework consists of three applications which can be used to collect
data. A cross-platform application registers native operating system hooks and is
used to log keyboard and mouse events in a system-wide context on standard desk-
top and laptop computers. This is able to capture input in any scenario on a desktop
or laptop computer. A more practical web-based application was also developed.
Implemented in JavaScript and run in a browser, the application only collects key-
board and mouse events which occur within the context of the page. This library can
be initialized on any web page and is capable of recording any type of event the doc-
ument might generate, including keystroke, mouse, touchscreen, and accelerometer
events when the hardware is available. Finally, a mobile application was developed
which replaced the soft keyboard on a mobile device and captures information in a
system-wide context. Both applications send the data to a server where the user is
authenticated by a session key to ensure data integrity during the collection phase.
Data from all applications was compared in order to determine whether there is any
difference in the timing information of keystroke and mouse events and whether the
two sources could be used in the same population.
The native Behavioral Biometrics Logger (native-BBL) is desktop application was
developed with the purpose of collecting data from HCI on a standard desktop
computer. The application records mouse movement, keystrokes, and textual in-
formation in a system-wide context. This application was used to collect several
different sets of data.
(mobile-BBL)
A web-based behavioral Biometrics Logger (web-BBL) was developed to capture ...
A summary of each biometric dataset can be found in Table 2.3. An label is assigned
to each database for future reference.

2.2. Keystroke and mouse

Most of the experimental keystroke and mouse data was collected on standard desk-
top computers running either Windows, OS X, or Linux with commodity hardware.

9

Chapter 2 Experimental Data

In this case, there are 5 different types of events which are considered. These include
keystroke, stylometry, mouse motion, mouse click, and mouse scroll events. Unless
otherwise stated, keystroke and mouse events are defined in Table 2.1:

Event Attribute Description

Keystroke

Time press Timestamp of the key press
Time release Timestamp of the key release
Key code The key code

(implementation-dependent)
Key name The name of the key (universal).

Stylometry
Time start Beginning of the stylometry

event
Time end End of the stylometry event

Text Text which was entered during
the event

Mouse motion
Time Instantaneous timestamp of the

event
Coordinates Screen coordinates of the pointer

Button Which button (if any) was being
held

Mouse click

Time press Timestamp of the button press
Time release Timestamp of the button release

Coordinates press Screen coordinates at the time of
the press

Coordinates release Screen coordinates at the time of
the release

Button The button which was pressed

Mouse scroll

Time Instantaneous time
Coordinates Screen coordinates at the time of

the scroll
Direction The direction of the scroll

apparatus
Amount The amount of scrolling which

resulted (system dependent
Table 2.1.: Keystroke and mouse events

Timestamps for each event are usually provided with millisecond precision with an
accuracy of .. depending on the system details. Mouse motion and scroll events are
instantaneous, while keystroke, stylometry, and mouse click have a duration. This
is merely a matter of convenience, since the keystroke, stylometry, and mouse click
events may be represented as sequences of instantaneous events by “unstacking” the
action associated with each timestamp. For example, the class of a keystroke event
could be changed to a key-action pair, which occurs instantaneously.

10

2.2 Keystroke and mouse

The keycode of a keystroke event is not enough to identify the key when collect-
ing data from heterogeneous systems. A key manager must be implemented (See
Appendix) which is able to consistently classify key events from various systems
to the corresponding physical key on the keyboard. The variation of keyboards in
addition to operating systems and applications makes this task especially complex.
In addition to this, it is known that variations in keyboard model, environmental
conditions, and types of input may affect the accuracy of a biometric system which
utilizes keystrokes[22, 53].
Stylometry events begin and end within a context in which the user’s keystrokes
result in text appearing on the screen. The context is bound by any other event
which might alter the location of text being entered. This includes: mouse clicks,
the occurrence of any non-printable key, changes in window focus caused by either a
sequence of keystrokes or operating system command, and so on. The segmentation
of stylometry events is still experimental. Its purpose is to segment stylometry
events in a way which reflects the user’s intentions when writing or modifying a
document on a computer. These events may be considered to be operating at a
higher cognitive level than keystroke or mouse.

2.2.1. Long free-text and fixed-text

In free-text keystroke entry, the sequence of keystrokes is unknown, as opposed to
fixed-text entry where a known sequence is expected. In free-text, the sequence
of keystrokes is not necessary arbitrary depending on the context and expected
frequency of characters in the user’s native language. Authentication via free-text
generally requires a different approach than fixed text. Data were collected for
both long free-text and long fixed-text, as well and short fixed-text described in the
following section.
Free-text data was collected from 43 students, predominantly juniors and seniors, in
two sections of a spreadsheet modeling course in the business school of a four-year
liberal arts college. The classes met in a 20-seat desktop computer laboratory where
the exams were administered. The 40 students took four online short-answer tests
of 10 questions each, and the tests took place at approximately two week intervals.
The students were unaware that their data were being captured for experimental
analysis. Data from students not completing all four tests or having problems with
the input system were removed, resulting in complete data sets from 30 students,
17 male and 13 female. The text lengths of the answers to a test ranged from 433
to 1831 words per test, with a mean of 966 and a median of 915 words. An average
word length of five characters (six with spaces between words) yields roughly 6000
keystrokes per test. All the tests were taken on classroom Dell desktop computers
with associated Dell keyboards.
In addition to this, an existing dataset containing both long fixed and free-text is
used [53]. The data was collected from a total of 144 users primarily on Dell desktop

11

Chapter 2 Experimental Data

and laptop computers in a classroom setting. The fixed-text data was collected from
users who were instructed to copy a 652-character paragraph. The free-text was
collected from users who typed arbitrary emails of at least 650 keystrokes. Users
were instructed to correct error before ending each session. Several smaller datasets
were constructed to create users with equal number of free-text samples, resulting in
population sizes of 14, 30, and 119. The average sample length for the 119 dataset
is 755 keystrokes.

2.2.2. Short Fixed keystroke

2.2.2.1. Keypad

The numeric keypad samples were captured using an open-source third-party key-
logger designed by Fimbel . This keylogger was originally developed for testing
purposes and serves no malicious intent. It runs in the background of a computer
system thus being unobtrusive to the user and allowing for the capture of keyboard
and mouse input regardless of the application(s) running on a system. The numeric
keypad data were collected from 30 subjects over a four-day period with no more
than 60 samples collected per subject per day. Each subject first practiced key-
ing the input string several times before the samples were recorded. Each sample
consisted of the numeric sequence 914 193 7761 (shown here in telephone number
format) followed by the Enter key to provide a total of 11 keystrokes per sample.
All samples were entered with the right hand as if entering a phone number on a
digital phone or entering an ATM pin, and only correct numeric-sequence samples
were accepted.

2.2.2.2. Password

In addition to the keypad data collected, several publicly available password entry
datasets are used.

The Keystroke Dynamics benchmark data set [31] contains the press and release
times of keystrokes captured during password entry. A total 51 users were instructed
to enter a password (.tie5Roanl) 50 times over 8 sessions, for a total of 400 entries.
The password was selected to be representative of a string 10-charactor password,
and only correct entries were kept. The keylogging application ran on a laptop with
Windows XP and the timestamps are accurate to within ±200µs.

The GREYC-Keystroke benchmark dataset [20] contains password entry from 133
users, typing the password (greyc laboratory) over several months. Users were
instructed to record 1 or 2 sessions per week and to practice typing the password
before enrolling data in the system. Users were also instructed to data entry between
4 different keyboards.

12

2.2 Keystroke and mouse

The Keystroke 100 dataset [35, 34] contains password entry collected on a pressure-
sensitive keyboard from 100 users. Ten samples were collected from each user en-
tering the password (try4-mbs), having practiced typing it beforehand. For each
sample, the latency between key press timestamps was recorded. The raw press
and release timestamps of each key are not available. A time series of the pressure
exerted on each key was also recorded with a pressure-sensitive keyboard.

2.2.3. Multimodal tasks

Four different scenarios were developed to collect multimodal data from 50 users.
Keystrokes, mouse motion, click, and scroll events were recorded. Six edit scenarios,
six browser scenarios, 2 game scenarios, and 4 online quizzes were created for users
to complete. Graduate students from two computer science and information tech-
nology courses were instructed to complete the scenarios, although not every student
completed every task. For every scenario except the online quizzes, students were
required to start the native-BBL to capture data in a system-wide context. The
steps to start the logger are:

1. Login (create account if needed) to the native-BBL launch web page
2. Select the type of scenario (edit paragraph/web Search/game) and click on

Launch. This will launch logger window.
3. Minimize the logger window.
4. Follow the instruction for the scenario, provided on a different web page
5. After completing the experiment open the logger window and click on exit to

save the log, ending the session.
For the online quiz scenarios, the web-based BBL was used and students were not
aware of their data being captured.

2.2.3.1. Edit Tasks

Edit or Modify tasks are the typical activities performed by computer users. The
tasks were designed to induce a significant cognitive load, as a section of text must
be carefully read and modified to match the given text. This requires hand-eye
coordination and manipulation of the mouse and/or the keyboard. Six edit scenarios
were prepared. Students were presented with a portion of text which they must edit
to match another non-editable portion of text on the screen. A typical sample edit
scenario is listed below. The fixed text is what the student must modify the given
text to. The after text highlights the changes that must be made:
Fixed Koobface is a multi-platform computer worm that spreads primarily through

social networking sites. Its name is an anagram of Facebook. The worm
targets Web users with invitations to watch a video. Those curious enough to

13

Chapter 2 Experimental Data

click the link get a message to update their computer’s software, which begins
the download of the malware. Victims’ computers are drafted into a peer-
to-peer botnet and are sent official -looking advertisements of fake antivirus
software. Further, their Web searches are hijacked and the clicks delivered to
unscrupulous marketers. The "Koobface gang" made money from people who
bought the bogus software and from unsuspecting advertisers

Given Koobface is a computer worm that spreads through social networking sites.
Its name is an anagram for Facebook. The worm aims at web users with
invitations to watch a video. Those who click the link get a message to up-
date their computer’s software, which begins the download of the Koobface
malware. Victim’s computers are drafted into a botnet and are sent official
looking advertisements of fake antivirus software. Further, their Web searches
are hijacked and the clicks delivered to marketers. The group made money
from people who bought the bogus software and from advertisers.

After Koobface is a multi-platform computer worm that spreads primarily through
social networking sites. Its name is an anagram for Facebook. The worm
aims targets at wWeb users with invitations to watch a video. Those curious
enough to who click the link get a message to update their computer’s software,
which begins the download of the Koobface malware. Victim’s computers are
drafted into a peer-to-peer botnet and are sent official looking advertisements
of fake antivirus software. Further, their Web searches are hijacked and the
clicks delivered to unscrupulous marketers. The “Koobface gang” group made
money from people who bought the bogus software and from unsuspecting
advertisers.

The six edit task were designed according to the following ontology:
Light copy editing In this type, there will be very minimal changes to the document

(Before and After). These are generally performed at an editorial or review
level where there’s more focus to check on grammar rules.

Minor-Minor editing Minor editing involves changes, which do not alter/modify
the meaning of the document. It may vary from merely spell checks to cor-
recting typos. Again, they also contribute to minimal changes in the document
but it’s slightly heavier that a light copy edit.

Moderate copy editing A moderate copy edit can lead to substantial changes in a
document. Typical components would involve table of contents entries, text
to diagram relationships and structural (heading) reorganizations. It will also
involve add/modify/replace of words or small paragraphs in a document.

Heavy copy editing Comparing heavy to medium copy editing the primary differ-
ence would be the rewriting or changes in the document. Heavy copy editing
would involve changes to the base meaning of the document like active-passive
voice conversion, introducing a formal writing approach etc., This will bring
in major changes in the document and can sometimes lead to rewrite even
though it’s pretty rare.

14

2.2 Keystroke and mouse

Major changes In this scenario, there can be major changes in the document pri-
marily leading to alter the meaning of the same. Majority of such scenarios will
involve complete document rewrite or starting from scratch approach. This
method is a rarely used edit scenario unless the prepared document is almost
unfit to publish.

2.2.3.2. Browser Tasks

Browsing scenarios were designed to induce a “typical” web browsing session. Users
were given specific instructions on how to interact with the application and web
pages. Six scenarios were prepared. A typical sample browser scenario is listed
below:

1. Login to the native-BBL launch web page
2. Select the type of scenario (edit paragraph/web Search/game) and click on

Launch. This will launch logger window.
3. Go to Yahoo: http://www.yahoo.com/
4. Click on Sports (left menu) MLB (top menu) Teams (top sub-menu) Boston

Red Sox Team Report for the Boston Red Sox
5. Go back two pages
6. Click on New York Yankees Depth Chart for the New York Yankees
7. Click on Roster for the New York Yankees (next to “Depth Chart”)
8. Click on Sabathia, CC (scroll if necessary) and in the search field above, type

“New York Yankees Captain” and click Sport Search
9. Exit tab or browser
10. Open the logger window and click on exit to save the log, ending the session

2.2.3.3. Gaming Scenarios

Two gaming scenarios were implemented. The game scenarios were observed to re-
quire heavy interaction with the computer, compared to the edit, browser, and quiz
tasks. Both games are primarily operated by the mouse, so little or no keystroke
information was recorded during these sessions. The games used were Spider Soli-
taire and Star Bubbles . Both games were web based and run in a typical browser.
Students were directed to follow these instructions:

1. Login to the native-BBL launch web page
2. Select “Game: Spider Solitaire” from the task menu and then click on “Launch”
3. Once the application is running, minimize the application window so it will

not interfere with you playing the game

15

Chapter 2 Experimental Data

4. Click on the Game: Spider Solitaire link at the bottom of the page to access
the game

5. Click on How to Play to review the rules of the game

6. When done, click on Back

7. Click on Play One Suit

8. Attempt to finish the game

9. Exit the BioLogger when you finish playing

10. Open the logger window and click on exit to save the log, ending the session

2.2.3.4. Online quiz

Four quizzes were prepared for students taking an online course. Three of the quizzes
were peer evaluations and one was an introductory quiz. All students in the course
were required to take the quizzes, although they were only graded for completion.

2.3. Mobile

As the hardware for mobile devices varies greatly, it is important to consider OS and
device-specific capabilities when collecting data. The information available depends
on the device sensors, operating system, and permissions of the application. This
can lead to a rich set of attributes. Android allows to build custom text input
services, including keyboards, which enables us to write a custom keyboard to collect
the necessary user data. Besides these technical considerations, Android has 79%
market share which makes it by far the most popular mobile platform. Therefore the
decision was made to select Android as the main OS to implement the mobile-BBL.

The mobile-BBL replaces the system keyboard on devices running the Android op-
erating system. In this way, it is able to capture events in a system wide context in
any application. The soft keyboard is itself an application and is used heavily for
interacting with most applications. Limiting events to interaction with on-screen
buttons, the attributes for mobile touchscreen events are summarized in Table 2.2.

16

2.3 Mobile

Attribute Description
Time Timestamp of the event
Action Type of action (press, move,

release)
Entity The ID of the button or entity

associated with this event
Keyboard Keyboard layout in use (Latin,

symbol, etc.)
Orientation The screen orientation (portrait

or landscape)
Coordinates Screen coordinates where the

event occurred (pixels)
Pressure Pressure exerted on the screen

(normalized)
Touch major/minor Length of major/minor axis of

touch as an ellipse (pixels)
Rotation Rotation rate of the device

(rad/s)
Acceleration Acceleration of the devices

(m/s2)
Screen density Density of the screen (dpi)
Screen size Screen size (pixels)

Table 2.2.: Mobile event attributes

The class of each touchscreen events is uniquely defined by action and entity at-
tributes and each event occurs instantaneously. The screen density and size can
be used to get the physical location of the event on the device. The rotation and
acceleration are capture from the gyroscope and accelerometer if they are available
on the device. The touch major and touch minor values give the length of the major
and minor axes of an ellipse that describes the touch area at the point of contact.
Also note that since a pointing device may slide after it has generated a press event,
the release event may not necessarily be generated with the same entity. This is
especially the case with swype keyboards, although users were not allowed to use
this method of input for data collection.

Another important consideration is that software keyboards usually never display
all the possible symbols on a single screen due to limited available area size. This
is remedied by presenting the user with different ways to input additional symbols,
such as alternative layouts (for example, for numbers and symbols), and by using
long key presses on some of the buttons. Therefore, the keyboard layout must be
recorded, as different layouts contain different entities.

Data was collected from 10 users on a Nexus 4 device in both portrait and landscape

17

Chapter 2 Experimental Data

mode. No instructions were given other than to use the device normally and type
on the soft keyboard for several minutes.

In addition to the data collection, a publicly available mobile dataset is used. The
Touchanalytics database contains touchscreen data from 41 users [19]. There were
5 different phones and 7 different tasks involved. In 4 of the tasks, users were
instructed to read a document followed by answering a questionnaire. The other
3 tasks involved spotting the difference between two images. Similar attributes to
those in Table 2.2 were recorded, less the accelerometer and gyroscopic data.

2.4. Additional datasets

2.4.1. Keystroke RTI

A keystroke random time-interval (RTI) dataset contains a sequence of instanta-
neous, single-class events from 60 users. The only information available is the time
at which each event occurs. This presents a challenge to traditional feature extrac-
tion techniques for keystroke biometrics, and a new dynamical systems approach
is introduced. The dataset was collected by asking users to repeatedly hit a single
key on a keyboard, with the hypothesis that the rhythm of individual users will be
unique. It is part of the benchmark dataset for the 2014 Competition on Biometric
identification based on user-generated RTI.

2.4.2. Web search history

A web search history database is provided by [27]. The database contains anonymized
browsing history for 452 users. Each record contains the timestamp of the visit, a
unique ID for the visit place, the type of request, and the place ID of where the user
came from. The database contains over 4 million page visits.

2.4.3. Eye movement

The Second Eye Movements Verification and Identification Competition (EMVIC)
provides a database of eye movements recorded from 34 users. Each user was in-
structed to look at several different photographs and decide if they know anyone in
each photograph. Samples were recorded at a rate of 1kHz and vary in length from
891ms to 22,012ms.

18

2.4 Additional datasets

ID Task Users Sessions Source Biometric (event
freq.)

A Online quiz 43 1.2k [51]
Keystroke
(2.5Hz)

Stylometry
B Mixed 57 738

New

Keystroke
(0.2Hz)

Mouse click
(0.1Hz)

Mouse motion
(12Hz)

Mouse scroll
(0.05Hz)

B1
Edit
paragraph 45 270

B2 Web browsing 40 240

B3
Game 1
(Solitaire) 18 108

B4
Game 2 (Star
Bubbles) 20 120

B5 Online quiz 18 198

C
Fixed motion
tasks 10 60 [48] Mouse motion

(9Hz)
D Mixed 144 1.7k

[52] Keystroke
(3.2Hz)

D1
Essay
questions 14 210

D2
Essay
questions 30 400

D3
Essay
questions 119 845

D4 Copy task 39 393

D5
Essay
questions 142 1.3k

E Keypad 30 600 [5] Keystroke
(2.7Hz)

F Password 51 20k [31] Keystroke (4Hz)

G Typing 10 52 New Mobile touch
(4Hz)

H Trigger actions 41 232 [19] Mobile touch
(1.6Hz)

I Web browsing 452 500k [27] Web search
history (3.5µHz)

J Picture gazing 34 837 IJCB 2014:
EMVIC

Eye movement
(1kHz)

K RTI 60 420 IJCB 2014:
RTI

Keystroke RTI
(3.4Hz)

L Password 100 1k [35, 34] Keystroke with
pressure (3.7Hz)

M Password 133 7.5k [20] Keystroke
(4.4Hz)

Table 2.3.: Dataset summary

19

3. Authentication Model

3.1. Introduction

The classification procedure is based on a vector-difference authentication model
which transforms a multi-class problem into a two-class problem. The resulting two
classes are within-person (“you are authenticated”) and between-person (“you are
not authenticated”). The dichotomy model is a strong inferential statistics method
found to be particularly effective in large open biometric systems where it is not
possible to train the system on all individuals in the population. The applications
of interest here, however, involve a closed population where it is possible to train
the system on all of the authorized users. Therefore, a more accurate “engineering”
closed-system procedure was developed for these and similar applications.

In the simulated authentication process, a claimed user’s keystroke sample requir-
ing authentication is first converted into a feature vector. The differences between
this feature vector and all the earlier-obtained enrollment feature vectors from this
user are computed. The resulting query difference vectors are then classified as
within-person (authentication) or between-person (non-authentication) by compar-
ing them to the previously computed difference vectors for the claimed user. A
k-nearest-neighbor algorithm with Euclidean distance is used to classify the un-
known difference vectors, with a reference set composed of the differences between
all combinations of the claimed user’s enrolled vectors (within-person) and the dif-
ferences between the claimed user and every other user (between- person). Thus,
differences of difference vectors are being calculated.

3.2. Dichotomy model

The classification procedure uses a vector-difference authentication model which
transforms a multi-class problem into a two-class problem [13]. The resulting two
classes are within-person (“you are authenticated”) and between-person (“you are
not authenticated”). To explain the dichotomy transformation process, consider
a small example of three people {P1, P2, P3} where each person supplies four
biometric samples. Figure 3.1 plots the biometric sample data for these three people
in two-dimensional feature space. This feature space is transformed into a feature-
difference space by calculating vector distances between pairs of samples of the

21

Chapter 3 Authentication Model

same person (within-person distances, denoted by x⊕) and distances between pairs
of samples of different people (between-person distances, denoted by x�). Let dij

represent the individual feature vector of the ith person’s jth biometric sample, then
the sets x⊕ and x� of vector differences are calculated as follows:

x⊕ = {|dij − dik|where i = [1 . . . n], j, k = [1 . . .m], j 6= k} (3.1)
x� = {|dij − dkl|where i, k = [1 . . . n], i 6= k, j, l = [1 . . .m]} (3.2)

where n is the number of people, m is the number of samples per person, and the
absolute value is of the elements of these vectors. If n people provide m biometric
samples each, the numbers of within-person n⊕ and between-person n� distance
samples, respectively, are:

n⊕ = m× (m− 1)× n
2 (3.3)

n� = m×m× n× (n− 1)
2 (3.4)

Figure 3.1 shows the transformed feature difference space for the example, n = 3
and m = 4 yields n = 18 and n = 48 for a total of 66 vector differences. The two
highlighted difference samples come from the two lines in Figure 3.1.

Two performance enhancing modifications were made in converting the open to
the closed-system procedure. First, the new procedure matches the claimed user’s
sample against all the enrollment samples from that user for authentication rather
than just one as in the open system. Second, the new procedure is user-focused in
that only the claimed user’s enrollment samples and their relationships to the other
users’ enrollment samples are utilized in the classification process.

Because most pattern recognition systems calculate difference vectors in the match-
ing/classification process, the fact that the dichotomy model takes differences of
difference vectors is often not understood as different and unique. The training
space of difference vectors grows rapidly as the population increases, particularly
the number of between-person distance samples – for example, 200 users each pro-
ducing 10 enrollment samples generates 1,990,000 between-person distance samples.
Thus, it is necessary to reduce the number of training difference vectors, and pre-
viously a random sampling was performed. Now, however, an improved reduction
method has been discovered that has led to significantly higher performance. For
efficiency and performance the improved user-focused reduction method retains only
training difference vectors that include the claimed user’s test samples. Thus, the
numbers of within-person n and between-person n distance samples, respectively,
become:

22

3.3 Model validation

n⊕ = m× (m− 1)/2 (3.5)
n� = m×m× (n− 1) (3.6)

Figure 3.1.: Feature space

For the small example illustrated above, 3.2a shows the corresponding feature-
difference spaces for user S1, yielding n = 6 and n = 32.

For large n the number of vector difference samples, especially the between-person
differences, is greatly reduced. For example, in the above mentioned example of 200
users each producing 10 enrollment samples, the number of between-person distance
samples is reduced from 1,990,000 to 19,900. More importantly, this user-focused
approach improves performance by taking into account the clustering of the indi-
vidual user’s samples. Figure 3.1 shows three clusters of samples from the three
users. 3.2b shows the feature difference space for only user S1 where the within-
class feature-difference samples are clustered rather tightly, corresponding to the
tight cluster for user S1 in feature space Figure 3.1. In contrast, the within-class
feature difference samples in 3.2a are less tightly clustered because they represent
the feature-difference samples from all three users. Now, realizing that 3.2b charac-
terizes this phenomenon for only two features to permit a two-dimensional drawing,
consider the greater overall tighter clustering effect of this user-oriented approach
in a higher dimensional pattern feature space.

3.3. Model validation

The methods of evaluation in this section are all considered technical evaluations of
a BAS.

23

Chapter 3 Authentication Model

(a) Original feature difference space (b) User-only feature-difference space

Figure 3.2.: Feature difference space

3.3.1. Receiver operating characteristic (ROC) curve

The false accept rate (FAR) and false reject rate (FRR) are traditionally used to
measure the performance of a binary decision classifier, where data may be labeled
as either positive or negative.
Receiver operating characteristic (ROC) curves characterize the performance of a
biometric system and show the trade-off between the False Accept Rate (FAR) and
the False Reject Rate (FRR). In this study, the ROC curves were obtained using
a linear-weighted decision procedure of the k nearest neighbors with k=21 unless
otherwise noted. Each neighbor is assigned a weight, from k to 1, with the closest
neighbor weighted by k, the second by k-1, ..., and the farthest by 1. With k fixed,
another parameter, l, is varied from 0 to k(k+1)/2, resulting in 232 points on the
ROC curve. At each point, the query sample is accepted as within if the weighted
sum is greater than or equal to l and between otherwise. The error rates are then
calculated as FAR = FP/(FP + CN) and FRR = FN/(FN + CP), where FP =
false positives, FN = # false negatives, CP = # correct positives, and CN =
correct negatives.

3.3.1.1. Leave-one-out cross-validation (LOOCV)

The leave-one-out cross-validation (LOOCV) procedure simulates many true users
trying to get authenticated and many impostors trying to get authenticated as other
users. For n users each supplying m samples, m n positive (one for each sample)
and m 1 negative (each sample versus the other users) tests can be performed. This
is particularly effective for smaller populations and limited data, since it utilizes all
of the enrolled samples in a BAS.
The procedure is implemented as follows. For each question (“left-out”) test sample
to be authenticated, the within and between-person difference vectors are computed

24

3.3 Model validation

without that sample. This creates the reference set, which consists of the entire pop-
ulation less the sample to be authenticated. The query vectors are then computed
by taking the difference vectors between the question test sample and enrollment
samples belonging to the claimed user. The results of a nearest neighbor classifica-
tion for each of the test difference vectors are grouped together to make the decision
by considering the nearest neighbors from all the resulting vector differences. The
FAR and FRR can be calculated when the procedure is complete by counting the
number of FP, FN, CP, and CN.

3.3.1.2. Repeated random sub-sampling

In cases where a population is very large, or each user has many enrolled samples,
LOOCV is not possible. Instead, a repeated random sub-sampling is used to validate
the model. For each repeated experiment, the database is split into a reference set
and a query set. All of the samples in the query set are authenticated as each user is
the reference set. The FAR and FRR are then calculated similarly to the LOOCV.

3.3.2. Biometric menagerie

The equal error rate (EER) acts as a single measure of the performance of a biometric
authentication system. We have generally found that a small number of samples
with larger amounts of data result in lower error rates. In order to evaluate the
performance of a system in practice, it is important to account for the variability in
types of users. In several experiments, user error histograms are introduced in order
to determine the distribution of individual error at the population EER. It has been
pointed out that users may often fall into different categories in a BAS [56]. The
following ontology is proposed:
Sheep Easily identifiable users
Goat Users which are difficult to identify
Lamb Users which are easily imitated
Wolf Users which are good at imitating others
The presence of both lambs and wolves in the population of a BAS presents a
potential security threat. It should also be noted that all of experiments in this
thesis involve zero-effort attacks in order to evaluate performance.

25

4. Keystroke

4.1. Introduction

Keystroke dynamics refers to the way a person types on a keyboard. Individual
typing characteristics allow for the identification and authentication of users.

Keystroke dynamics can be used in both online and offline applications. In online
applications, it is desirable to verify a user as soon as possible. Since longer samples
give a better estimate of a user’s typing characteristics, there is a tradeoff between
time and accuracy.

There primarily two categories of keystroke biometrics: fixed text and free text.
Fixed text applications deal with input where the ordering of events is fixed, such as
password or PIN entry. Sequences which are observed and do not match the expected
order of events are generally discarded. This requires that a user inputs the correct
sequence before the keystroke dynamics of that sequence are even considered for
authentication. Free text applications deal with sequences where the ordering of
events is unknown beforehand. Features may be optimized depending on the type
of input.

The keystroke biometric is a behavioral biometric that has gained contemporary
popularity as the keyboard provides a vital input device. Keystroke biometric sys-
tems utilize the keystroke dynamics as features or measurements [12]. The usual
keystroke dynamic measurements are the dwell (key press duration) and flight (tran-
sition between two keys) times.

The goals of this chapter are to further develop and quantify the keystroke biometric
by evaluating the technical performance of a system which authenticates users by
keystroke dynamics. Environmental variables considered are population size, input
length, and input type. Several feature sets are evaluated and a novel fallback
mechanism is proposed for free-text applications.

4.1.1. Related work

A comprehensive evaluation of long text keystroke biometrics can be found in [52].
Villani et al. collected both free and fixed-text long samples from over 100 partici-
pants. Factors such as keyboard type, fixed vs free-text, and template degradation

27

Chapter 4 Keystroke

over time were evaluated to determine the performance of a long-text keystroke
authentication system.
Killourhy et al. evaluate the performance of several classifiers on short fixed-text
input.[31]. Using a database of 400 password-typing samples from 51 participants,
they found the best EER to be 0.096% with a scaled Manhattan detector described
in [4]. In [30], the authors determined a 1% EER for 200 PIN entries from each of 28
participants. In this case, 2 out of 3 repetitions of the PIN are considered, requiring
that 2 match the user’s template. A ±200µs resolution was obtained with a special
clock.
With special hardware, Loy et al. evaluate the performance of an authentication
system using pressure-based typing biometrics[35]. A keyboard which records the
pressure exerted on each key was created. They combine latency times and the
typing pressure biometric to achieve a FAR of 0.87% and FRR of 4.4% on 100
samples made up of 10 participants typing an 8-character password 10 times each.
Roth et al. make use of only keystroke sound, picked up by a low-cost microphone[46].
They evaluate the possibility of authenticating an individual from typing sound
alone, with an experimental result of 25% EER for 5-8 minute sessions recorded
from 45 participants.
In [47], Serwadda et al. examine the possibility of statistical attacks against keystroke
biometric systems. As the technology becomes more prevalent, attackers are more
likely to find innovative means of defeating the system. Zero-effort attacks do not
fully capture the system performance in the presence of statistical attacks performed
by bots, as shown by the authors. They concluded with an increase of the EER of
three high performance systems by 28.6% to 84.4%. In order for a bot to perform a
statistical attack, the variation in typing characteristics of a representative popula-
tion must be known. With public keystroke databases, it is possible for an attacker
to obtain this information and enumerate a user’s keystroke dynamics.

4.1.2. Other factors to consider

Using the same database as [31], Killourhy et al. determine the effect of the system
clock on keystroke biometric authentication systems in [29], and determine an in-
crease of 4.2% when using a standard low-resolution clock of ±10− 15ms compared
to a high resolution clock with an accuracy of ±200µs. They hypothesize that other
factors, such as bus contention, system load, and networking delays, may have an
effect on a user’s keystroke dynamics. Any environmental factor which interferes
with the HIC has the potential to disrupt the dynamics of a user’s keystrokes.
User emotion was determined to have an effect on keystroke dynamics in [28].
Khanna et al. found that a positive state generally led to an increase in typing
speed, while a negative state led to a decrease. Recognition rates of negative vs
neutral and positive vs neutral user states were found to be anywhere from 62-89%
using various classifiers.

28

4.1 Introduction

4.1.3. Placement on Newell’s Time Scale

The keystroke biometrics operates primarily in the Cognitive Band of Newell’s Time
Scale [41]. Using dataset D2 to justify this claim, the rate at which a key is pressed
for the typical user is 295ms with a standard deviation of 126ms. The formation
of words also lies in the Cognitive band, as the word rate of the typical user was
found to be 1.6s. The boundary between the Cognitive and Rational Bands lies
somewhere between the formation of words and sentences, as the sentence rate of
the typical user is 21.3s. This implies that the individual keystrokes should provide
a more reliable biometric than measurements taken on words and sentences, which
operate at a higher cognitive level.

4.1.4. Keystroke event models

There are primarily two different event models for keystroke event sequences. In
the first, events are order by the timestamp of the press event. The event classes
correspond to the location of the physical key on the keyboard. Each event contains
a single attribute: the timestamp of the key release (or alternatively, the duration
the key was pressed for). This model is depicted in 4.1a. For each event, et =
(key, timerelease), where t is the key press timestamp, c is the identity of the physical
key, andtimerelease is the timestamp of the key release. The key release timestamp
may be replaced by the duration the key was held down for.

(a) Duration model (b) Instantaneous model

Figure 4.1.: Keystroke event models

In the other event model, keystroke events contain no attributes and the class of the
event is uniquely determined by the action (press or release) and the identity of the
physical key. In this model, events occur instantaneously and press/release action

29

Chapter 4 Keystroke

may occur in any order. This is depicted in 4.1b. For each event, et = (key, action),
where t is the event timestamp, action is either press or release, and key is defined
similarly as above.
It is trivial to convert a keystroke sequence from one model to the other. However,
different features may be extracted for each type of model, as will be seen in the
following sections.

4.2. Statistical features

Using the duration model, a number of statistical features can be defined which cap-
ture a user’s typing keystroke dynamics. The differences between event timestamps
and durations are considered. The various time measurements that can be made
are in Figure 4.2. Note than for overlapping keystrokes, the type 1 transition time
will be negative.

Figure 4.2.: Keystroke latency times for non-overlapping and overlapping keys

The feature set used to obtain experimental results on long free-text samples consists
of:

• 78 duration features (39 means and 39 standard deviations) of individual letter
and non-letter keys, and of groups of letter and non-letter keys

• 70 key-release-to-key-press transition features (35 means and 35 standard de-
viations) of the transitions between letters or groups of letters, between letters
and non-letters or groups thereof, between non-letters and letters or groups
thereof, and between non-letters and non-letters or groups thereof

• 70 key-press-to-key-press transition features (35 means and 35 standard devi-
ations) identical to the above features except for the method of measurement

• 19 percentage features that measure the percentage of use of the non-letter
keys and mouse clicks

• 2 keystroke input rates: the unadjusted input rate (total time to enter the
text / total number of keystrokes and mouse events) and the adjusted input
rate (total time to enter the text minus pauses greater than 1⁄2 second / total
number of keystrokes and mouse events)

30

4.3 Fallback

The full set of keystroke features can be found in Appendix A.

4.2.1. Features for fixed-text

For fixed-text, it is useful to consider the position of each key in the event sequence as
the event identity, instead of the physical location of the key. For example, consider
the expected text to be “biometric” without the quotes. The duration of the first
key, rather than the duration of b, would be taken as a feature. Additionally, the
duration of the 2nd and 8th keys would be taken as separate features, rather than
the duration of i.

4.3. Fallback

A number of applications need methods for handling missing or insufficient data. In
speech and language processing, several methods of handling missing or sparse data
are described in [25]. The N-gram model of missing or infrequent data is estimated
based on the (N1)-gram model of sufficient data recursively in the back-off [26] and
deleted interpolation [23]. Although both models fail if the unigram is missing,
this occurs rarely. In this section, a correlation technique is proposed to handle
insufficient keystroke data.

For arbitrary text input and a fixed set of features, there may be insufficient obser-
vations to compute some features. The missing observations must be compensated
for in some way. A fallback procedure places the features into a hierarchy so that
features with insufficient observations are able to fall back to features with more
observations. The observations in parent features are either a superset of the child
features or contain more commonly occurring observations believed to be correlated
with child features. Three different fallback hierarchies were evaluated. The first
is a hierarchy based on the frequency of observations (characters) in the English
language. Keys are grouped by character type, with the root of the hierarchy being
all possible keys. The second hierarchy is a physiological model based on the lay-
out of the keyboard and typing characteristics of touch-typists. The third fallback
model is a regression model, where features with insufficient observations fall back
to closely correlated features. The same model is used for the entire population, so
correlation between features within an individual are not taken into account.

In contrast to password input, which is fixed, long-text input samples can consist
of several hundred keystrokes of varying frequency. Therefore, keystroke biometric
systems operating on such input can use statistical features such as the mean and
standard deviation of the dwell and flight times [53]. These measurements, however,
suffer from poor estimates of those keys where the number of samples during an
acquisition session is missing or insufficient.

31

Chapter 4 Keystroke

Inspired from the language processing “back-off” models, two hierarchical fallback
tree models were evaluated for use in a keystroke biometric system. These hierar-
chical tree models served two functions. First, they provided fallback to additional
data when insufficient keystroke instances were available to compute the statistical
features. Second, they provided a granularity of features, where the granularity in-
creases from gross features at the top of the tree to fine features at the bottom. The
first hierarchical model, called the ‘linguistic’ model, organizes keys based primarily
on frequency of use [53, 54]. The second model, called the ‘touch-type’ model, groups
keys based on the fingers used to strike keys by touch typists [53]. These linguistic
and touch-type models are depicted in Figure 4.3 and Figure 4.4, respectively.

An early analysis of the fallback aspect of the two models found the linguistic model
to be slightly better than the touch-type model [53], although different features were
used in the comparison since the models served two different functions. Compared
to a default model of simply falling back to the top node of the hierarchy tree,
the linguistic model reduced the error rate by 26% and 53%, respectively on two
datasets, showing the utility of the hierarchy tree for the fallback function. These
datasets contained samples of 500 or more keystrokes. Fallback never occurred more
than one level up from the leaf nodes and most of the one-level-up nodes were never
used (vowel, frequent consonant, all letters, non-letters) because their leaf nodes
were sufficiently frequent to not require fallback.

In this study, the two functions of the hierarchy tree – feature granularity and
fallback – are separated. The hierarchy trees are retained for feature granularity
and a sounder statistical model, called the correlation-based fallback table model,
is proposed for fallback.

Two large independent long-text keystroke databases, A and D2, are used in this
study. The first database is used to construct the correlation-based fallback table
model. The second is used to evaluate system performance as a function of sample
length. The new correlation fallback model should show improvement over the earlier
models, especially as the data becomes sparser (fewer keystrokes per sample).

The concept of correlation plays important roles in many aspects of pattern recog-
nition [32]; it can be modeled as an ultimate goal to optimize while it can be a
serious problem to mitigate. In keystroke biometric, the problematic side of corre-
lation between feature variables was addressed in [11, 14] to justify their choice of
Mahalanobis distance over Euclidean distance. Here we focus on the useful side of
correlation for estimating better feature values of sparse keystroke dwell data.

4.3.1. Feature correlation

The ith keystroke of a user is denoted as Ai and consists of three tuples: key value,
pressed time, and released time: Ai = (ki, pi, ri). The dwell is the duration of a key

32

4.3 Fallback

(a) Linguistic duration fallback (b) Linguistic transition fallback

Figure 4.3.: Linguistic fallback model

(a) Touch-type duration fallback (b) Touch-type transition fallback

Figure 4.4.: Touch-type fallback model

pressed and a set of samples of dwell of a certain key x is defined in Equation 4.1.

Sx = {ri − pi | (ri, pi, ki) ∈ A ∧ ki = x} (4.1)

Assuming that samples in Sx follow the normal distribution, the mean µx and stan-
dard deviation σx of Sx are often used as dwell features to represent a keystroke
biometric sample [54, 53]. According to the fundamental theorem in probability
called ‘law of large numbers’ [2], the larger number of dwell information for a cer-
tain key, the closer the mean feature to the user’s habitual expected value. However,
the estimated µx and σx may be unreliable if the size of Sx, |Sx| is too small.

Hence, linguistic [54] and physiological [53] hierarchical fallback models were used
to mitigate this data insufficiency problem. If a certain key x occurs infrequently,
i.e., the set size |Sx| is less than t, the user defined threshold, the fallback procedure
as defined recursively in Equation 4.2 was used to increase the number of samples;
Sx = fallb(x).

fallb(x) =

{ri − pi | ki ∈ leaf(x)} if |Sx| > t

fallb(parent(x)) otherwise
(4.2)

33

Chapter 4 Keystroke

Figure 4.5.: The average frequency of alphabet keys

Poor correlations between parent and children nodes in the previous hierarchical
models and the most correlated keys to each key are revealed from a keystroke
database. The sessions in database A were limited to 500 keystrokes since many
of the sessions vary significantly in length. The new database, A’, contains 1666
sessions from 43 users with an average of 38 sessions each and the session length
is 495 on average. The data was collected from university students who took 4
online exams over a semester. Each session is approximately one question, with a
total of 10 questions in each exam. Not all of the students completed the exam
successfully, resulting in some missing sessions. Average frequency of each alphabet
key in the database is given in Figure 4.5, which is astoundingly similar to that in
common English published in [7]. This similarity justifies the representativeness of
the keystroke database.
The database is represented as a table R as given in Figure 4.6 where each row
represents a session and column represents the average key dwell and its frequency
value, which is parenthesized. Prior to the correlation analysis, the preprocessing
consists of extracting a sufficient co-exist table of two keys with a user defined
threshold, t1, is defined in Equation 4.3 and illustrated in Figure 4.6.

Dx,y = {(µi,x, µi,y) | si,x > t1 ∧ si,y > t1 (4.3)

The table Dx,y, not R, is used to derive the correlation between x and y. Let
nx,y = |Dx,y| be the size of instances and the Pearson product-moment correlation
coefficient, ρx,y is defined in Equation 4.4. A value of ρx,y closer to 1 indicates better
correlation between two keys.

ρx,y =
∑nx,y

i=1 (µi,x − µ̄x)(µi,y − µ̄y)√∑nx,y

i=1 (µi,x − µ̄x)2
√∑nx,y

i=1 (µi,y − µ̄y)2
(4.4)

4.7a and 4.7b are examples of good and bad correlated cases, respectively. 4.7c
shows correlations of all pairs of vowels {a, e, i, o, u}. Upper right and lower left
triangles contain the mean and standard deviation value plots for each pair of vowels.

34

4.3 Fallback

Figure 4.6.: Extracting sufficient co-exist table with t1 = 7

(a) Good correlation (0.908)
b/w D and E

(b) Bad correlation (0.561)
b/w A and I

(c) Correlations among vow-
els

Figure 4.7.: Correlation Plots between pairs of key dwells

Even after outlier remover, the standard deviation distribution did not form a linear
correlation.
Table 4.1 shows the best four keys that correlate to each key. It should be noted
that even though the key x correlates best with a key y, x is not necessarily the
best correlating key for y. In all, it can be observed that majorities of keys correlate
highly with other keys. Keys ‘E’ and ‘S’ have the highest correlation coefficient
value and are one of the only two keys which are symmetrically correlated (the
other being ‘N’ and ‘O’). Letters like {‘Q’, ‘X’, ‘Z’} are not frequently used and thus
do not correlate well with others
Figure 4.8 shows a plot of key frequency and the first choice correlation coefficient.
The correlation coefficient decreases for infrequently used keys. This suggests a
limiting factor in the effectiveness of the regression model, since correlations with
other keys are low and it is the infrequently used keys that usually must be accounted
for small sample sizes.
There are two other important correlation parameters that can be useful in the
later fallback model. They are the slope, αx,y Equation 4.6 and the intercept, βx,y

Equation 4.7 of simple linear regression line Equation 4.5 that fits two correlating
keystroke dwell variables.

35

Chapter 4 Keystroke

1st Choice 2nd Choice 3rd Choice 4th Choice
A S 0.847 T 0.818 E 0.801 R 0.76
B T 0.555 H 0.527 D 0.52 S 0.518
C T 0.797 S 0.772 E 0.763 R 0.754
D E 0.773 T 0.759 S 0.75 C 0.715
E S 0.876 T 0.835 R 0.826 A 0.801
F T 0.74 E 0.708 R 0.692 S 0.69
G T 0.707 E 0.649 R 0.641 S 0.629
H N 0.803 I 0.76 U 0.748 T 0.744
I N 0.809 O 0.804 T 0.771 H 0.76
J U 0.407 I 0.4 O 0.386 P 0.374
K O 0.577 L 0.558 I 0.546 N 0.544
L O 0.775 T 0.72 S 0.719 I 0.716
M N 0.789 O 0.729 U 0.724 I 0.723
N O 0.833 I 0.809 H 0.803 U 0.79
O N 0.833 I 0.804 U 0.777 L 0.775
P H 0.6 I 0.599 O 0.595 U 0.587
Q E 0.596 S 0.594 T 0.592 A 0.574
R T 0.849 E 0.826 S 0.796 A 0.76
S E 0.876 T 0.86 A 0.847 R 0.796
T S 0.86 R 0.849 E 0.835 A 0.818
U N 0.79 O 0.777 I 0.759 H 0.748
V E 0.581 T 0.562 S 0.559 R 0.541
W E 0.775 S 0.771 T 0.742 A 0.71
X E 0.538 T 0.529 R 0.51 S 0.504
Y T 0.595 E 0.569 S 0.569 R 0.551
Z E 0.46 A 0.445 T 0.443 S 0.433
Table 4.1.: Correlation coefficient-based fallback table

fx,y(x) = αx,yx+ βx,y (4.5)

αx,y = ρx,y
σy

σx

(4.6)

βx,y = µy − αx,yµx (4.7)

These parameter values are given in Table C.1 in Appendix C.

4.3.2. Correlation based fallback table

In the previous section, it was claimed and discovered empirically that most key
dwell mean values having high correlation with other keys. This section focuses

36

4.3 Fallback

Figure 4.8.: Max correlation vs. key frequency

on how to utilize these discovered correlation parameters to better estimate the
features.
Figure 4.9 illustrates the essence of our claims. Suppose that there are four users
and each user provided five mean feature values as plotted with its linear regression
line in 4.9a. Consider a query session, q, which claims to be a user 2. Only three
and four samples appeared for the keys ‘D’ and ‘E’, respectively. The computed
mean values q = (3.98, 4.16) are poor estimates.

(a) 2-Feature space of keys D and E (b) Shifting from q (3.98, 4.16) to qc (2.47, 5.13)

Figure 4.9.: Proposed scenario

In this infrequent case, the most correlating key dwell values may be summed to
compute the new mean value. As illustrated in 4.9b, the linear regression line can
be utilized to convert the value. This new mean value augmented with linearly
transformed highly correlating key dwell values is denoted as qc = (2.47, 5.13) and
we claim that this is a much better estimate as depicted in 4.9a.
If the linear regression line is not used but the other key dwell values are directly aug-
mented, this will also result in a poor estimate which is denoted as qd = (4.08, 4.08).

37

Chapter 4 Keystroke

Previous hierarchical fallback models used direct values rather than linear trans-
formed values.
Figure 4.10 shows the flow chart of the proposed model that utilizes the correlation
information R discovered in the previous section.

Figure 4.10.: Flow chart of proposed correlation-based fallback table model

Sx,l = {αx,l(ri − pi) + βx,l | (ri, pi, ki) ∈ A ∧ ki = kx,l} (4.8)

The rows of R are alphabet keys containing the sorted other keys in descending order
of correlation coefficient where each key has four tuples, (kx,l, αx,l, βx,l, γx,l) denoting
the lth rank key, slope, intersect, and correlation coefficient for the key x, respectively.
Let Sx,l defined in Equation 4.8 denote the set of linearly transformed values, for
example in 4.9b, S′E′,1 = 5.23, 5.37, 8.68 is transformed from S′E′ = 2.43, 2.61, 6.91.
The proposed correlation based fallback table model is defined in Equation 4.9 as a
recursive function, cft. It is called initially, Sx = cft(Sx, 0) with the user defined
threshold for the minimum number of observations.

cft(Sx, l) =

Sx if |Sx| > t

cft(Sx ∪ Sx,l, l + 1) otherwise
(4.9)

It should be noted that Equation 4.9 is imperfect. It can be infinite when the size
is never greater than t or undefined if there are no more keys available. Yet it gives
the succinct definition of the proposed system.

38

4.3 Fallback

If the alphabet ’A’ appears sufficiently enough, i.e., above the user defined threshold
t, we just use the feature set. If not, use the linear regression function in the first
choice, i.e., ’E’ for ’A’. If |S′A′ ∪ S′A′,1| are sufficient, use them for the feature value
for S′A′ .

Sx,l = {ri − pi|(ri, pi, ki) ∈ A ∧ ki = x ∧ ri < tc} (4.10)

The system was tested on dataset D2, which contains a population of 30 users with
a total of 400 sessions. Each user recorded between 10 and 25 sessions and each
session contained between 500 and 1000 keystrokes. The samples were recorded
over a semester and the population consisted mainly of university students. For
each session, users were instructed to respond freely to essay-type questions.
Four different fallback models were evaluated with the same feature set. The features
consist of the mean and standard deviation of each letter key, for a total of 52
features. Using only the 26 letter keys, a linguistic, physiological, regression, and
default one-level model were used. The linguist and physiological models are subsets
of the trees in 4.3a and 4.4a, containing only the relevant letter nodes, and the
default model falls back to all letter keys when there are insufficient samples.
Each session was truncated at various intervals from 50 to 500 keystrokes to get the
EER as a function of input length for each model. Figure 4.11 shows the equal error
rate (EER) for each type of fallback model as a function of input length. Table 4.2
contains the EER values of each model at each input length.

Figure 4.11.: EER of each fallback model as a function of |Sx|

The linear regression model offers modest improvements over the linguistic and phys-
iological model with the exception of two different input sizes. This may be a result

39

Chapter 4 Keystroke

|Sx| Default Linguistic Physiologic Regression
50 22.88 22.60 21.80 20.47
100 17.34 18.06 16.37 17.84
200 11.80 12.36 11.00 11.34
300 9.74 9.51 8.60 8.50
400 7.52 3.93 7.56 6.52
500 6.80 6.62 6.54 6.15
Max 4.54 4.86 4.70 4.31

Table 4.2.: Fallback model EER values

of the regression model having a higher number of fallbacks for the shorter input
lengths than the hierarchical models, which rarely fall back beyond the first level.
Features for infrequently occurring keys are more likely to “run out of data” quicker
in the regression model, since each level contains only a single key. Calculating an
accurate and useful linear regression model requires large amounts of data since its
purpose is to effectively handle low occurring keystrokes. In general, the keys with
the lowest frequency also have the weakest correlation with other keys, which limit
the effectiveness of any fallback model.
Parent nodes in previous fallback models in[25, 26] played not only the substitute
role for insufficient keys, but also global feature roles. Separating these two functions
allows for greater flexibility in choosing features and a particular fallback model.
Correlation attributes (alpha beta gamma) among different key dwells are used
to estimate any infrequent key dwell mean value. These attributes within a user
may be utilized as distinctive features for verification purpose and it remains as
a future work. The correlation between groups of keys and flight times were also
not considered in this study and may play a role in a complete regression fallback
method.

4.4. Bigram frequency

Using the instantaneous event model for keystroke sequences, the frequency of n-
grams becomes of interest when trying to determine the source of the sequence. In
sequence classification, n-gram features are often used as input to traditional clas-
sifiers, such as SVM or KNN[55]. The difficulty in using n-gram features to classify
the user of a keystroke sequence is that the features quickly become dependent on
the context as n increases. For this reason, only bigrams are considered. Intuitively,
increasing n will capture character pair and work usage and lead to a weaker set of
stylometric features.
To compute the bigram features, first the K most frequent bigrams of each session
are calculated. These are each normalized to the sum of the K most frequent bi-

40

4.5 Experimental Results

grams only, ignoring the other bigrams. This ensures that the frequencies are not
affected by outliers or sample length, as well as choosing bigrams that are most
likely to be approaching their true distribution. The union of all the K most fre-
quent bigrams in each session is then calculated. With a diverse population, this is
likely to be much larger than each K due to the occurrence of different bigrams in
each session. For feature extraction, only the maximum L normalized frequencies in
B are used. Increasing L has the effect of capturing population variability. Increas-
ing and decreasing K has the effect of individual variability, eventually decreasing
performance. Note that some of the M bigrams will not appear in any of a user’s
sessions, and have a frequency of 0.
Since the selection of features is dependent on the frequency of each user, key usage
and some stylometric information is preserved (ie. the frequently occurring event
bigrams are correlated with both frequent characters, when a release event imme-
diately follows a press event for that key, and with character bigrams whether the
keys overlap or not). The presence of overlap between keystrokes is also captured,
or alternatively whether t2 is positive or negative between the most frequently used
key pairs. Note that only the order of events is considered and timing information
is not used. The procedure is summarized in Algorithm 4.1.

Algorithm 4.1 Relative n-gram frequency feature extraction
Let N be the set of users in a closed system
Let Mi be the set of sessions for user i
Let f(s) = the frequency of every unique bigram in sample s
Let f̂(b, s) = the frequency of bigram b in sample s
bij = {K most frequent bigrams ∈ f(sij), i ∈ N, j ∈Mi}
B = {L most frequent bigrams ∈ ⋃i∈N,j∈Mi

bij }
Use B as the set of bigram features
Then calculate the feature vector xij for each sample as xij = {f(b, sij)/

∑
b∈B f(b)}

The frequency and Fisher score (ration of between-class variance to within-class
variance) of keystroke digrams for dataset D1 is shown in Figure 4.12. Using the set
of 10 features (for the frequency of 10 bigrams), the EER of dataset D1 was found
to be 18%.

4.5. Experimental Results

4.5.1. Input type

An application of keystroke dynamics can fall into two different categories: fixed
text vs. arbitrary input. For a copy task, the user is copying some known text, such
as a password. Features may be used which exploit some structure in the fixed text,

41

Chapter 4 Keystroke

Figure 4.12.: Keystroke digram frequency

since the input will not change and is considered authentic if it does not match the
original text. In arbitrary input applications, the length and sequence of characters
are both unknown. Most keyboard input falls into this category. The features used
for arbitrary input must be comprehensive and able to compensate for missing or
low-frequency observations.
The cognitive load during keystroke input may have an effect on typing rhythm,
causing delays during keystrokes or different sequences where the text entered will
be evaluated at some point, perhaps as part of an online course.
Most fixed input occur as passwords or pin codes on a keypad. Longer fixed input
applications are less common, although it may be useful to determine the accuracy
as a function of input length for fixed input applications only.

4.5.2. Free text population size and input length

These experiments employed free-text (arbitrary input) keystroke data samples
from dataset D. All the data samples contained over 500 keystrokes, averaged 755

42

4.5 Experimental Results

keystrokes, and were input on Dell desktop PCs and laptop PCs (almost exclusively
Dell machines). The data samples were collected in sets of five, the sets recorded at
two-week intervals, and the five samples of a set usually recorded in a single day’s
session. For their five samples in a set, the participants were instructed to enter
emails on five different topics from a given list of topics. Three experiments were
conducted to analyze performance as a function of the number of keystrokes per
sample and the user population size Table 4.3.

Table 4.3.: Summary of experimental data and EER for the 755-keystroke samples

Each of the experiments involved positive and negative authentication tests. The
number of positive tests = number-of-samples and the number of negative tests =
number-of-samples times (n-1). For example, for the 119 participant experiments,
the 595 keystroke samples allowed for the evaluation of 595 positive and 70,210
(595x118) negative tests. The negative tests were zero-effort imitations by other
subjects in the database. Figure 4.16 shows the ROC curves for the 14, 30, and 119
user experiments. Figure 4.13 shows the FAR/FRR versus the l (L) parameter for
the 755-keystroke samples on the right. Although the EER can be approximated
from the ROC curve, it can be more accurately determined form the crossover point
on the FAR/FRR versus L curve (note that because the lowercase l can be confused
with the digit 1 we sometimes use the uppercase L to represent the parameter).
Although L goes from 0-231, expanded FAR/FRR plots at low L values are shown
here because the crossover points on the FAR/FRR versus L curves occur in that
region.

(a) 14-user FAR and FRR (b) 30-user FAR and FRR (c) 119-user FAR and FRR

Figure 4.13.: FAR and FRR for 14, 30, and 119 users at original input lengths

To determine how fast an unauthorized user could be detected, the EER rate was
determined as a function of sample length (number of input keystrokes) for the 14,
30, and 119 user populations Figure 4.15.

43

Chapter 4 Keystroke

(a) 14-user ROC curves (b) 30-user ROC curves (c) 119-user ROC curves

Figure 4.14.: ROC curves for 14, 30, and 119 users at various input lengths

Figure 4.15.: EER vs. input length

For the maximum length keystroke samples, Figure 4.16 shows the ROC curves. The
EERs were 0.4%, 1.7%, and 3.7% for the 14, 30, and 119 participant populations,
respectively.

Because the mean population performance does not give the complete picture, the
varied performance over the population of users was analyzed and described using
the animal designations of [16]. Figure 4.17 shows three histograms analyzing the
populations of 30 and 119 users for the maximum keystroke samples when operating
at the EER point on the ROC curve. For each population size the three histograms
show the FRR (potentially identifying those easily verified, sheep, and those difficult
to verify, goats), the FAR of how easily the true authors were imitated (potentially
identifying those easily attacked, lambs), and the FAR of how easily imitators can
attack the true users (potentially identifying the strong attackers, wolves).

44

4.5 Experimental Results

Figure 4.16.: ROC curves for 14, 30, and 119 users for the maximum keystroke
samples

An examination of these histograms found only one significant outlier and that
occurred in the FRR histogram of the 119 user population. This FRR histogram
displays the percent of the 119 users (5 samples each) having 0% (0 of 5), 20% (1 of
5), 40% (2 of 5), 60% (3 of 5), 80% (4 of 5), and 100% (5 of 5) false rejects. Because
one user had 80% (4 of 5) samples rejected while all others had 40% or fewer, this
user is an outlier and could be considered a goat (a user difficult to authenticate).

To obtain system performance in this study we simulated the authentication process
of many true users trying to get authenticated and of many zero-effort impostors
trying to get authenticated as other users. An important advantage of this vector-
difference model is that it provides relatively large numbers of between- and within-
person distance samples for analysis and ROC curve generation. Furthermore, the
leave-one-out method allowed for the closed-system evaluation of a considerably
larger population size than had been evaluated previously.

As in a study by [6], the approach taken in this study was to train on as much
enrollment data as possible while authenticating users on smaller quantities of data
as appropriate for the application. For the test taker application there is usually no
hurry to authenticate the user and all of the keystroke data for an online test could
be used for authentication. However, for detecting unauthorized users in security
sensitive applications the quantity of keystroke data must be limited to a minute
or so in order to detect the intruder before significant harm is committed. Because
large quantities of training data from authentic users – perhaps over many days,
weeks, and even months – are available for some applications, such as the intruder
detection application, elaborate procedures for training the system on significant
quantities of data should be investigated.

45

Chapter 4 Keystroke

(a) 30-user population (b) 119-user population

Figure 4.17.: Histograms of FRR (left), FAR of attack receivers (middle), and
FAR of attackers (right)

For using such a continual authentication system on government or private com-
pany machines, keylogger software could be installed to transparently capture user
input on all monitored PCs and the authentication processing performed on servers.
However, because many employees like to use their PC for occasional personal use –
email, banking, stock market transactions, etc. – there are obvious privacy concerns
with a keylogger capturing all input, including account numbers and passwords.
And, although the organizations might say they can monitor their machines as they
like, the employees could have strong objections. To increase user acceptance and
ameliorate privacy concerns, monitored machines should be clearly marked as such
and unmonitored machines could be made available for employee personal use during
lunch and break times.

Although privacy concerns remain, for authenticating test takers this should not be
a problem because the students would be using a test-taking application. For the
intruder detection application, it is important to relate typing speed to the number
of keystrokes entered per minute, and it will be done in this discussion for the
English language. The average word length is five, plus a space, or six characters
per word. For average computer users, the average typing speed is about 33 words
per minute, while a professional typist’s speed is about twice that of the average user,
and keyboard key spacing has an effect on the typing speed [43]. Since the number of
keystrokes is usually only slightly more than the number of characters, the average
computer user generates about 200 keystrokes per minute, while a professional typist
generates about 400 keystrokes per minute. Assuming an average typing speed, 1-2
minutes of a potential intruder’s input would likely be in the 200-400 keystroke range.
In examining the error rate as a function of the number of keystrokes Figure 4.15,
a big drop occurs in going from 100 to 200 keystrokes for 14 and 30 users, and in
going from 200 to 300 keystrokes for 119 users, which implies that at least 200-300
keystrokes, or 1 to 11

2 minutes, is necessary to detect an intruder, which is hopefully
fast enough to stop the intruder from causing damage.

46

4.5 Experimental Results

The main contributions of this study were the development of the improved classifi-
cation system and its performance evaluation. On samples of 300 or more keystrokes
(11

2 minutes or more at average typing speed) performance was over 98% on 30 users
and over 94% on 119 users. On the large 755-keystroke samples performance reached
98.3% on 30 users and 96.3% on 119 users, indicating the potential of this approach.

In this study the EER was used for simplicity as a single value of performance to
show the trends of performance as a function of the number of keystrokes per sample
and the population size. However, in setting up the procedure for authenticating a
user in a deployed system, the operating point on the ROC curve would be chosen
appropriately, usually with a considerably lower FAR than FRR. For example, a
good operating point on the ROC curves for 14 and 30 users in Figure 4.14 might
be FRR = 2% and FAR ~ 0%. Although a low FAR operating point would incur
more false rejections, several authentication failures could be required before making
an unauthorized-user decision. How easily users accept such a system and at what
value of FRR it becomes too intrusive are problems for future work concerning
system deployment, maintenance, and user acceptance.

4.5.3. Short fixed text

Biometric analysis of short keystroke input has high security importance in two
common applications – password input and number pad input. The password ap-
plication is important because computer users frequently use passwords to log on
to computers and to access email, bank, brokerage, and online store accounts. The
number pad input application is important for similar reasons because digit only
passcodes are used for access on automated teller machines (ATMs), on electronic
security keypads for building and room access, and on mobile/digital phones. Pass-
words and digit-only passcodes are currently the only security measures employed
in these access applications and the password/passcode information that we are re-
quired to remember is easily compromised. These security threat situations could
be improved considerably if it were possible to authenticate the user more precisely,
distinguishing between the genuine user and an impostor.

Two studies were conducted to measure the performance of the keystroke biomet-
ric authentication system in the password and numeric keypad input applications.
Carnegie Mellon University (CMU) conducted similar studies [31, 37]. Using the
passwords data from CMU [31], the first study consisted of experiments using two
different feature sets – the features used in the CMU study and a new feature set
created for this study. The second study on short numeric input used two different
feature sets – the CMU features and a new feature sets created for the study.

Dataset F is used for this study, which was made available by Killourhy and Maxion[31].
Two experiments were conducted on the CMU 51 subject data using the closed-
system dichotomy model described in section 3.2.

47

Chapter 4 Keystroke

Due to the large number of samples per user, a repeated random sub-sampling vali-
dation method was used to derive the ROC curve, described in subsubsection 3.3.1.2.
Each experiment was repeated three times, each time randomly splitting the feature
space into 380 reference samples and 20 query samples per user. The reference sam-
ples are further refined by k-means clustering in order to reduce the size of both the
within and between spaces. For each user, this would be equivalent to an authen-
tication attempt after having recorded 380 samples. The key independent variable
was the feature sets.

The first experiment used the CMU 51 subject data and re-implemented the 31
CMU features from [31]. From the 10-character password “.tie5Roanl” + Enter, the
31 CMU features were the 11 hold (dwell) times plus the 10 keydown-keydown and
10 keyup-keydown transition times.

The second experiment was similar to the first but used a set of 75 features designed
for this study. The 75 features were differences between event timestamps using the
instantaneous event model, where each event is the action-key combination occurring
instantaneously at time t. For example, ‘press e’ and ‘release e’ are considered as
two separate events and are not necessary consecutive. The set of bigrams over the
entire population was used, producing the set of 75 bigrams. The time difference of
each bigram was taken for each user. So although each feature vector contains 75
features, only 21 of these are non-zero, since there are only 22 events (21 pairs). The
non-zero features are usually different for each user because some users consistently
overlap certain keys while others do not, as show in section 4.4. Thus, there are 75
features, but it depends on the user which features are non-zero.

A summary of the results is shown in Table 4.4, the ROC curves in Figure 4.18, and
the FAR/FRR versus parameter L curves in Figure 4.19. Although the EER can be
approximated from the ROC curve, it can be more accurately determined from the
crossover point on the FAR/FRR versus L curve (L is used in place of l to avoid
confusion with 1). Although L goes from 0-231, expanded FAR/FRR plots at low
L values are shown here because the crossover points on the FAR/FRR versus L
curves occur in that region.

Table 4.4.: Experimental Results on CMU Password Data

Two experiments were conducted on newly collected numeric keypad input to com-
pare against the password performance above and the CMU number-pad study [37].
In this study, although it was not possible to compare the algorithms on the same
input data as in the password study above because the CMU data were not avail-
able. Instead, dataset E is used, which consist of new numeric keypad data were
obtained in a manner similar to how the CMU data were collected.

48

4.6 Conclusion

Figure 4.18.: ROC curves for the CMU data experiments

(a) Exp. 1 (b) Exp. 2

Figure 4.19.: FAR/FRR versus L for experiments 1 and 2

The third short text experiment used the same 31 CMU features as experiment 1 and
the fourth experiment used similar features to experiment 2. The results are shown
in Table 4.5, the ROC curves in Figure 4.20, and the FAR/FRR versus parameter
L curves in Figure 4.21.

4.6. Conclusion

The performance of a behavioral biometric authentication system was evaluated
on two different types of short input in which the sequence of keystrokes is fixed,
password and numeric keypad sequences. In contrast to long text input applications,
it is more feasible to obtain large numbers of enrollment samples for short input
applications from the population of participants.

49

Chapter 4 Keystroke

Table 4.5.: Experimental Results on CMU Password Data

Figure 4.20.: ROC curves for the CMU data experiments

An advantage of the vector-difference model is that it operates efficiently with a
small number of enrollment samples. Due to the large reference set in the first set
of experiments, enrollment samples are reduced by k-means clustering, creating a
smaller “ideal” reference set for each user. This model was then validated by a
repeated-random sub-sampling procedure. With a smaller number of samples per
subject in the second set of experiments, a leave-one-out validation method was used
to obtain system performance.
Privacy is less of a concern for applications of interest which collect fixed-text short
input, as opposed to those which require long-text arbitrary input. Many authoriz-
ing entities (ATM, security keypad, mobile phone) already have knowledge of the
password or numeric sequence which must be entered. Others, such as a cash regis-
ter, do not obtain any personal information from the user. Obtaining a metric on
the keystroke dynamics of the fixed input does not require monitoring a session and
possibly collecting personal information, as is the case in arbitrary input.
The main contribution of this study was the development of an improved classifi-
cation system and its performance evaluation. In the password study, on the same
CMU input data, the Pace Classifier was compared against 14 other systems ana-
lyzed in a CMU study [31]. The three top performing systems in that study had
EERs between 9.6% and 10.2%, while the EER achieved in this study was 8.7% on
both the features from the previous study and on a new set of features.
In the numeric keypad study, the EERs achieved were 10.5% and 6.1%, which are
comparable to those obtained in the password study described here and to the basic
EER of 8.6% obtained in the CMU numeric keypad study [37].

50

4.6 Conclusion

(a) Exp. 1 (b) Exp. 2

Figure 4.21.: FAR/FRR versus L for experiments 1 and 2

51

5. Stylometry

5.1. Introduction

Text authorship is becoming an increasingly important task as information is trans-
mitted in an environment where anonymity is not only possible, but easy to obtain
for the average user. One way of attributing an author to a piece of text is through
a stylometry analysis. This technique involves characterizing the writing style of a
person through a number of syntactic features. Combined with keystroke analysis,
this is particularly effective on long text input. In a situation where keystroke infor-
mation is not available (a keylogger cannot be legally install on the client machine)
or not reliable (the keystroke events within a web browser may not correlate to the
system key events), then authorship must be obtained through a textual analysis
alone. Syntactic features have proven to be reliable for long text input, but as the
length or quality of the text is decreased, then the ability to discriminate based
solely on these features also decreases. The goal of this study is to perform a deeper
level semantic analysis in order to attribute an author to a piece of text with a higher
confidence. This is done with both short and long text samples, and compared with
result previously obtained using only stylometry features.
The main application of interest in this study is verifying the identity of students in
online examination environments, an application that is becoming more important
with the student enrollment of online classes increasing, and instructors and ad-
ministrations becoming concerned about evaluation security and academic integrity.
The 2008 federal Higher Education Opportunity Act (HEOA) requires institutions
of higher learning to make greater access control efforts for the purposes of assuring
that students of record are those actually accessing the systems and taking online
exams by adopting identification technologies as they become more ubiquitous [1].
To meet the needs of this act, the keystroke biometric seems appropriate for the
student authentication process. Stylometry appears to be a useful addition to the
process because the correct student may be keying in the test answers while a coach
provides the answers with the student merely typing the coach’s words without
bothering to convert the linguistic style into his own.
Keystroke biometric systems measure typing characteristics believed to be unique
to an individual and difficult to duplicate [12, 24]. The keystroke biometric is
a behavioral biometric, and most of the systems developed previously have been
experimental in nature. Nevertheless, there has been a long history of commer-
cially unsuccessful implementations aimed at continuous recognition of a typist.

53

Chapter 5 Stylometry

While most previous work dealt with short input (passwords or short name strings)
[8, 21, 40, 44, 45], some used long free (arbitrary) text input [9, 22, 33, 39, 51, 53].
Free-text input as the user continues typing allows for continuous authentication
[17, 38, 39, 49] which can be important in online exam applications [18, 51].
Stylometry is the study of determining authorship from the authors’ linguistic styles.
Traditionally, it has been used to attribute authorship to anonymous or disputed
literary documents. More recently, computer-based communication and digital doc-
uments have been the focus of research, sometimes with the goal of identifying
perpetrators or other malicious behavior. Recent computer studies have used sty-
lometry to determine authorship of emails, tweets, and instant messaging, in an
effort to authenticate users of the more commonly used digital media. A few studies
have applied stylometry to the detection of intentional obfuscation or deceptive writ-
ing style, and others to the detection of the author’s demographics [10]. Appendix D
summarizes the prior authorship attribution stylometry studies and lists the associ-
ated references.
There are several reasons keystroke and stylometry biometric applications are ap-
pealing. First, they are not intrusive to computer users. Second, they are inex-
pensive since the only hardware required is a computer with keyboard. Third, text
continues to be entered for potential repeated checking after an initial authentication
phase, and this continuing verification throughout a computer session is referred to
as dynamic verification [33].
A number of measurements or features are generally used to characterize an individ-
ual. For the keystroke biometric these measurements are typically key press duration
(dwell) times, transition (latency) times, and the identity of the keys pressed. Sty-
lometry typically uses statistical linguistic features at the word and syntax level.
The current work addresses some of the limitations of prior work on free-text biomet-
ric systems [53]. The current system has several unique aspects. First, it can collect
raw keystroke data over the Internet as well as from a key logger IEEE 6th Inter-
national Conference on Biometrics, BTAS 2013. on an individual machine. Second,
it focuses on free-text input where sufficient keystroke data are available to permit
the use of powerful statistical feature measurements – and the number, variety, and
strength of the measurements used in the system are much greater than those used
by earlier systems reported in the literature. Third, it focuses on applications using
arbitrary text input because copy texts are unacceptable for most applications of
interest. And, fourth, because of the statistical nature of the features and the use of
arbitrary text input, special statistical procedures are incorporated into the system
to handle the paucity of data from infrequently used keyboard keys.
Using an open biometric system approach, an earlier student authentication study
was conducted on data obtained from students taking actual tests in a university
course [51]. In contrast, this paper presents a closed biometric system approach
to classification that significantly increases the performance reported in the earlier
study. Also, to further analyze the stylometry component of the system, a separate

54

5.2 Features

study on 30 book authors was undertaken to evaluate the stylometry performance
on text lengths ranging from 250 to 10000 words. Additionally, because the mean
population performance does not give the complete picture, the varied performance
over the population of users was analyzed on the book-author study.

5.2. Features

The stylometry system uses a set of 228 linguistic features – 49 character-based, 13
word-based, and 166 syntax-based features, summarized in Appendix B. The fea-
tures were normalized to be relatively independent of the text length – for example,
the number of different words (vocabulary) / total number of words was used rather
than simply the number of different words. The features were also chosen to show
reasonable variation over a population of users – for example, some students use a
large vocabulary and others a small one. As in the keystroke system, the features
are standardized into the range 0-1.

5.3. Experimental results: online test-takers

Two closed-system experiments were conducted on the data from the 30 students
on each of the keystroke and stylometry systems using the leave-one-out procedure.
Because the answers to the test questions could be short, several answers were
combined to obtain reasonably sized biometric samples. In the first experiment, five
test answers (half the test answers) were combined to obtain each sample, resulting
in eight samples per student since each of the four tests contained ten questions for
a total of 40 questions. In the second experiment, ten answers (all the answers of
a test) were combined to obtain each sample, resulting in four samples per student.
The experimental design and results are summarized in Table 5.1.

Table 5.1.: Summary of experimental results

Figure 5.1 presents the ROC curves for the keystroke and stylometry systems for
the two experiments. For both the keystroke and stylometry systems, performance
improved in going from experiment 1 to experiment 2 with the doubling of the data
sample size.

55

Chapter 5 Stylometry

(a) Keystroke (b) Stylometry

Figure 5.1.: ROC curves for dataset A

5.4. Literature authorship

The stylometry results on the student tests were considered weak and the combined
keystroke-stylometry system did not result in increased performance over that of
the keystroke system alone. Therefore, considering that stylometry could require
considerably more text input than keystroke analysis, a more extensive stylometry
study was performed on short novels to determine system performance as a function
of text length.

5.4.1. Data collection

Text samples, 10 from each of 30 authors for a total of 300 samples, were retrieved
from Project Gutenberg [3]. The text samples were taken from books published
between 1880 and 1930. This period was chosen based on the availability of books
with expired copyrights and the period was restricted to fifty years to ensure that
linguistic differences between authors would be more related to personal style than
to the time of writing. The samples were not restricted geographically – authors
were included from Great Britain, Ireland, and the United States. The samples
from each author also span a variety of text types. For example, Oscar Wilde’s
samples include an essay, De Profundis, a novel, The Picture of Dorian Gray, and a
play, The Importance of Being Earnest. All texts were longer than 5,000 words and
originally written in English. The thirty authors wrote in various genres – fiction
(8), action/adventure fiction (3), science fiction (1), British literature (6), mystery
and thriller (3), classical literature (7), and horror (2), shown in Table 5.2.
The 300 text samples were cut into files of eleven different sizes (250, 500, 750,
1000, 1500, 2000, 2500, 3000, 4000, 5000, and 10000 words) in order to obtain

56

5.4 Literature authorship

Table 5.2.: Overview of the 30 Authors

system performance as a function of text length. Of the 10000 word samples, 8 had
slightly less than 10000 words due to the size of the original text file.

5.4.2. Experimental results

Figure 5.2 presents the ROC curves for the various sample lengths and Figure 5.3
shows the ERR as a function of the sample sizes in words. The EER was 8.5% for
the 10K and 11.8% for the 5K word samples. As expected, performance gradually
increased (lower EER) with increasing text length.

Figure 5.2.: Book stylometry ROC Curves, 30 authors

Because the mean population performance does not give the complete picture, the
varied performance at the EER over the population of authors was analyzed and
described using the biometric animal designations. The FRR of each individual user
was analyzed in order to find users which have trouble authenticated as themselves
(goats). A distinction between two different types of FAR must be made though.

57

Chapter 5 Stylometry

Figure 5.3.: EER as a function of sample sizes in words

When the true identity of the query sample is different from what is claimed during
authentication, and a decision has been made to accept the query, then a false
acceptance occurs. This false acceptance may contribute to either a weak template
or a strong impostor. A distinction is made between the rate at which a template
falsely accepts query samples and the rate at which an attacking query sample is
falsely accepted. This distinction allows weak templates in the model to be identified
(lambs), as well as attackers who may be skilled at imitating the identity of others
(wolves). Over the author population, Figure 5.4 shows histograms of:

• FRR to identify those easily verified, sheep, and those difficult to verify, goats
• FARtemplate of how easily the true authors were imitated – identifying those

easily attacked, lambs.
• FARattacker of how easily imitators attacked true authors – identifying the

strong attackers, wolves.

Figure 5.4.: Histograms: FRR (left), FAR of receivers (middle), FAR of attackers
(right), over the 30 author 10000 word samples

Significant variation in performance over the population was demonstrated. For
example, one author had 50% FRR (5 of 10 samples rejected) while all others had
30% or less (Figure 6 left). This author, Oscar Wilde, can be considered difficult
to verify, a goat. Oscar Wilde’s samples – which included an essay, a novel, and a
play, as noted earlier – were not as homogeneous as those of the other authors.

58

5.5 Conclusion

5.5. Conclusion

The keystroke system performance results on the student test data were 100% on
the 6000-keystroke full-test and 99.96% on the 3000-keystroke half-test samples. Al-
though the results were obtained on a relatively small database, 30 students is a
reasonable class size. These results were an improvement over the 99.45% perfor-
mance on the 3000-keystroke half-test samples previously reported on the same data
[51] Note that the leave-one-out procedure used in this study permitted the full test
evaluations which were not possible using the procedure of the earlier study. High
keystroke performance was anticipated in this study for such large volume keystroke
input because high performance was also achieved in the earlier study on the same
data [51] and a 98.3% performance was achieved on a 30-user, 750- keystroke-sample
experiment in a recent study [39].
The performance of the keystroke biometric system is far superior to that of the
stylometry one. While the keystroke and stylometry biometrics are both behav-
ioral biometrics, they operate at different cognitive levels. The keystroke biometric
operates at essentially an automatic motor control level. Stylometry, however, oper-
ates at a higher cognitive level, and because it primarily involves word and syntax-
level units, much longer text passages are required relative to those required by the
keystroke biometric.
To obtain system performance in this study we simulated the authentication process
of many true users trying to get authenticated and of many zero-effort impostors
trying to get authenticated as other users. Although authentication of online ex-
amination participants in real time would not be possible with the described tech-
nique due to the significant amount of input required (half or full test), delayed
authentication with batch processing should be sufficient for university and HEOA
requirements.
Important parameters in authorship attribution methods are the length and number
of training and testing texts, and the number of potential authors [50]. Another
important factor discovered in this stylometry study was the relationship between
the texts under study and how the texts are produced. For example, in an earlier
study it was discovered that a relatively strong correlation existed between the
test answers and the test questions producing the answers [51]. Content-specific
terminology inherent to the course subject matter, and used by a majority of the
participants, confounded the results. Therefore, better performance results would
likely be obtained from student essays on a variety of topics, as might be obtained
from students in an English class, although two students who happen to choose the
same or similar topic may present a problem.
Future work on improving stylometry in student examination applications might
investigate the use of idiosyncratic features like the fraction of misspelled words,
typing speed, and sequences of characters such that would be found in short words
like “the” [18]. The use of longer text passages and those on different topics, such

59

Chapter 5 Stylometry

as essays in English classes, might also be explored, as well as different ways of
fusing the keystroke and stylometry results. Finally, while the student examination
experiments reported here used actual test data, the authentication process itself
was simulated, so future work might explore an actual authentication process in a
student assessment environment.

60

6. Mouse

6.1. Overview

Current researches in the area of mouse biometrics include different approaches
to obtaining data. These include using grid systems with predefined buttons that
subjects would need to click, moving the mouse to follow a sequence of dots presented
on a screen with feature extraction occurring from multiple iterations, and capturing
mouse movements when users play specific video games like Solitaire and StarCraft.
All these examples revolve around using specific applications or software to capture
mouse movements. Additionally the feature extraction and authentication process
is restricted to basic trajectory information like size, length, time, velocity and
acceleration.
These earlier studies have been based on fixed patterns with data acquisition oc-
curring on system-controlled actions performed by the user. The drawback of such
systems is that the user cannot make natural mouse movements at his or her con-
venience.
This chapter will explore mouse biometrics typical of a user using a computer. No
special hardware is used. The software that captures natural mouse movements
runs in the background without interfering with the user experience. This should
allow observation of mouse actions that occur in a natural unpredictable manner.
Feature extraction is not limited to trajectories, but includes more generic actions
such as mouse clicks, wheel spins, drag and drop movements, and highlighting text
behavior. We hope these effects lead to a strong mouse biometric system.

6.2. Preprocessing

The frequency at which the position of the pointer is captured depends on the
velocity of the pointer. When the pointer is not moving, no motion events will be
generated. Thus, the sequence must be re-sampled at evenly spaced intervals in
order to calculate certain key features, such as velocity and acceleration. Because of
this, the coordinates in the motion sequence for each session are first re-sampled at
a constant 100Hz. A parameter, τ , sets a threshold on the amount of time between
events which may be considered to have no motion. For example, consider two
consecutive events, e1 and e2, which occur at time t1 and t2, respectively. Depending

61

Chapter 6 Mouse

on the time difference between e1 and e2, a new event or sequence of events is
calculated according to Equation 6.1. In cases where the If |t1 − t2| is above the
threshold τ , the the coordinates of e1 are padded up until e2, creating a sequence
of length floor(|t1 − t2|/T) + 1. If |t1 − t2| is less than τ and still above the period
of the sampling rate, T , then the points between e1 and e2 are linearly interpolated
to create a new sequence. In cases where |t1 − t2| is less than T , the mean point is
used.

[en, en+1, ..., en+floor(|t1−t2|/T)] =

[e1, e1, ..., e1] if |t1 − t2| > τ

interpolate(e1, e2) if |t1 − t2| <= τ

[mean(e1, e2)] if |t1 − t2| < T

and |t1−t2| > T

(6.1)

The sampling rate was empirically chosen to be 100Hz to be great enough to min-
imize information loss from taking the mean location of consecutive events in the
case of high sampling rate. Most of the experimental data was collected on standard
desktops, with a clock resolution of approximately ±10− 15ms. It was also chosen
to be low enough that the samples don’t become unnecessarily large.
The threshold τ was chosen so that consecutive events are not mistaken to be part
of the same motion track. Since events are only generated when the mouse is moved,
τ acts as a minimum velocity threshold.
After the motion sequence is re-sampled, it is passed through a low-pass filter,
removing noise and smoothing the signal. A Hanning window of length 5 is used to
calculate the new (x, y) coordinates of each event in the sequence, where the window
function is defined by Equation 6.2.

w(n) = 0.5
(

1− cos
(2πn
N − 1

))
(6.2)

The point-to-point velocity is calculated by Equation 6.3 , where dist is a function
which gives the Euclidean distance between two points and T is the period (10ms
for a 100Hz sampling rate).

vi = dist(ei, ei−1)/T (6.3)

6.3. Sequence segmentation

The motion sequence by itself is relatively unstructured. In the behavioral biometric
event model, each event has an (x, y) attribute which occurred at timestamp t, and

62

6.3 Sequence segmentation

all event belong to a single class. In order to obtain a richer sequence of events, the
motion event sequence is segmented so that each event approximately represents a
single objective motion taken by the user. The purpose is to obtain a mapping from
the motion sequence to a class of actions, where each event corresponds to a goal in
the cognitive band of Newell’s Time Scale of human action [41].
The segmentation is performed with a threshold technique similar to the eye move-
ment segmentation in [15]. Events are considered to be part of a segment if the
point-to-point velocity at the event is a threshold, according to Equation 6.4. The
segments are then filtered to remove any segments which last less than a duration
threshold. The segments removed are labeled as noise, usually occurring when a
user is touching the mouse without moving it to another location on the screen.
This is similar to a gaze in eye movement, versus a saccade, which occurs in between
gazes. The algorithm to compute segments is found in Algorithm 6.1.

segment(en) =

true if vn > α

false otherwise
(6.4)

Algorithm 6.1 Sequence segmentation
Label each event with velocity above α as part of a segment.
Label each unique segment as consecutive segment events, separated by non-
segments.
Keep segments which last longer than dur, where dur is a minimum time threshold.

The segmentation of a motion track is show in Figure 6.1. The shaded areas show
movement (saccades) while the non-shaded areas show fixations.

Figure 6.1.: Velocity segmentation

The segments can now be discretized in order to determine the event class. A class
label is assigned to each segment according to its distance and direction. Similarly to

63

Chapter 6 Mouse

[48], the combination of distance and direction labels uniquely identify the segment,
depending on which bin the segment falls into. Let en now be a segment event in
a sequence of segments. The function dist(e) gives the pixel distance from the first
point in the segment to the last point. The function dire(e) gives the direction
of the segment, computed as an angle in [0◦, 360◦). The number of distance and
direction bins are both parameters to the segment class labeling algorithm, given as
Ndistance classes in Equation 6.5 and Ndirection classes in Equation 6.6 respectively. The
maximum distance, δ, is a normalizing parameter. Since the display and resolution
may vary across different machines, δ should be chosen large enough to cover most
trajectories. Any segments with a distance above δ are labeled with the largest
distance class.

edistance class =

Ndistance classes − 1 if dist(e) > δ

floor(Ndistance classes × dist(e)/δ otherwise
(6.5)

edirection class = floor(Ndirection classes × dire(e)/φ (6.6)

Each event in the sequence now contains:

• A unique class given by the distance and direction of the segment

• A sequence of timestamp-coordinates for each point in the segment, ci =
{(ti, xi, yi)where i ∈ [1...n]}

Segments class frequencies determined by domain to a certain extent.

Figure 6.2 shows the segments from two different users performing the same task,
with 4 direction classes and 8 distance classes.

6.4. Features

6.4.1. Motion

A set of motion features was developed with the intention of being representative of
a user’s mouse movement over the course of a session, with as little dependency on
the context of the session as possible. These include:

Duration The time of the trajectory is the total time taken to complete the tra-
jectory from start to end point. This is the difference in the timestamp
obtained at the start x-y coordinate and the timestamp obtained at the
end x-y coordinate of the curve.

dur = tn − t1

64

6.4 Features

(a) User A in dataset B2 (b) User B in dataset B2

Figure 6.2.: Segments from different users performing the same task

Distance The distance is the Euclidean distance between the start x-y coordinate
and the end x-y coordinate.

dist = ‖(xn − x1), (yn − y1)‖

Velocity The velocity of the segment is the ratio of the distance traveled to the
time taken, given in pixels/ms.

v = dist/dur

Length The length of the segment is the total distance traveled, or the sum of
distances between every x-y coordinate.

length =
n∑

i=2
disti

65

Chapter 6 Mouse

Curviness The curviness of the trajectory is the length of the trajectory divided
by the distance between the first and last points. However, to avoid
division by zero if the curve ends where it starts (like in drawing an
’O’), the divisor is limited to a small number, ie. 1/40 of a typical screen
width.

cur = length/distance

Energy The most efficient path to get from the location of the first point in
the sequence to the last point is a straight line which passes through
both points. In order to quantify the shape of the segment, the area
between the line and the segment is calculated. At each point on the
segment, the distance between the point and the intersecting point of the
normal line and perfect line is calculated. These distances are summed to
approximate an integral, or the total area covered between the segment
and the perfect line.

Inflection points The number of inflection points in the trajectory is the number
of changes between curvatures (clockwise to counterclockwise or vice
versa). For example, a typical drawing of the letter O, either clockwise
or counterclockwise, would have no inflection points, whereas a typical
drawing of the letter S would have one (from counterclockwise to clock-
wise). This can be found by detecting changes in sign in the angular
velocity at each point.

infl = |{diri × diri−1 < 0where i ∈ [2...n]}|

Smoothness The smoothness can be determined by number of local peaks in the
point-to-point velocity of the segment. Segments which represent a very
“smooth” motion will have a small number of peaks, as the initial accel-
eration and deceleration are applied. Segments with a “rough” motion
may have many velocity peaks, as the velocity continues to increase and
decrease several times over a segment. The velocity of a smooth segment
and peaks can be seen in 6.3a, while the velocity of a rough segment is
show in 6.3b.

vp = |{vi−1 < vi > vi+1 where i ∈ [2...n− 1]}|

Radius In physics, the radius of the path formed by a moving object can be
determined by the velocity and the angular velocity of the object. To
approximate the radius about which the pointer is revolving, the ratio
of the mean point-to-point velocity and mean point-to-point angular
velocity is taken.

r = vi

avi

66

6.4 Features

(a) Smooth segment (b) Rough segment

Figure 6.3.: Velocity peaks in smooth and rough segments

The distribution of several point-to-point measurements are also considered. Each
measure is taken at every point in the segment. Several descriptive statistics are
taken on the distribution, creating an addition 3 features for each function: mean,
median, and standard deviation.
Point-to-point distance The point-to-point distances are the distance between con-

secutive pair of points in the sequence

disti = {‖(xi − xi−1), (yi − yi−1)‖where i ∈ [2...n]}

Point-to-point direction The direction at each point is calculated by taking the arc-
tangent of the slope of each consecutive point-pair

diri = {arctan((yi − yi−1)/(xi − xi−1))where i ∈ [2...n]}

Point-to-point velocity The point-to-point velocity is given in pixels/ms. Note that
(ti − ti−1) = T since each point is sampled at regular intervals.

vi = {disti/(ti − ti−1)where i ∈ [2...n]}

Point-to-point acceleration The acceleration is the change in velocity between con-
secutive point-pairs.

ai = {(vi − vi−1)/(ti − ti−1)where i ∈ [2...n− 1]}

Point-to-point angular velocity Angular velocity between each consecutive point-
pair is the change in direction, given in rad/ms.

avi = {(diri − diri−1)/(ti − ti−1)where i ∈ [2...n]}

67

Chapter 6 Mouse

Point-to-point angular acceleration The angular acceleration is calculated similarly
to acceleration, by taking the change in angular velocity between point-
pairs.

aai = {(avi − avi−1)/(ti − ti−1)where i ∈ [2...n− 1]}

Each of the features above are taken for each event class, where the number of event
classes is given byNdistance classes×Ndirection classes. The frequencies of individual event
are also be used as features. Since these are strictly holistic features, it is possible
that they may be dependent on the context of the user application (ie. editing a
paragraph may invoke different user mouse behavior than playing an online game).

6.4.2. Click

Detecting double click events to avoid being system-dependent.
Mouse click features
Each click event is generated when the user presses the left or right buttons on the
mouse. Along with the button and the timestamps of the press and release, the
event contains the pointer coordinates at both the press and release of the button.
The events in the click event sequence are placed into one of three different categories:
single click, double click, or drag-and-drop. This corresponds to three commonly
occurring interactions involving the mouse buttons.
Double clicks are first found by taking the transition between press times of each
event. The default timing threshold between click events on Windows is 500ms
(ie. click events which occur within 500ms of each other will generate a double
click system event). In order to capture all double click events, event pairs where
the transition between press timestamps is less than 1000ms are considered to be
double clicks.
Drag-and-drop events are found by taking the distance between the press and release
coordinates of the click event. Events where the distance between the press and
release coordinates is greater than 5 pixels are considered to be drag and drops. This
value was determined to avoid including single clicks which contain small amounts
of motion between the press and release. This type of motion is called jitter.
Events which have not been labeled as either double click or drag-and-drop actions
are assumed to be single clicks.
The following features are taken on the action-labeled click events:
Single click and drag features

Duration The time between the button press and release
Transition The time between consecutive event presses

68

6.4 Features

Distance The Euclidean distance between the press coordinate and release coor-
dinate

Velocity The velocity of the action, given in pixels/ms. Note that for single clicks,
the velocity normally 0 since no motion is observed.

Rate The number of actions normalized to the session duration
Double clicks
First duration The duration of the first click in the double click action
Second duration The duration of the second click in the double click action
Transitions Type 1, 2, 3, and 4 transition times of the double click (see keystroke

transition times)
Jitter Distance between the press and release coordinates within each click
Motion Distance between the press of the first click and release of the second

click
Rate The number of double click events normalized to the session duration
The ratios of double clicks to single clicks, drags to single clicks, and drags to double
clicks are also taken, for a total of 38 features for each button. The features are
taken for the left and right mouse button, and for both buttons, creating a total
of 102 features altogether. Note that for users who rarely use the right mouse
button, many of the right mouse button features will be zero. It is also important to
consider that many of these features may become system-dependent in the case of
different hardware. The experimental datasets used mostly homogeneous hardware
to minimize environmental effects.

6.4.3. Scroll

System dependent
Mouse wheel scroll features
Scroll events are generated when a user moves the wheel of a mouse past a threshold.
Each event contains a timestamp, the direction and amount of rotation, and the
location of the pointer on screen.
The scroll event sequence is first segmented similar to the motion event sequence.
The velocity of the wheel is calculated by Equation 6.7, where scroll distance(·)
is a function which gives the scroll distance between two events by multiplying
direction = {1,−1} and amount, which is generally in the range (−3, 3).

vi = scroll distance(ei, ei−1)/(ti − ti−1) (6.7)

Boundaries of scroll segments are found where the velocity falls below a threshold,
experimentally determined to be vthresh = 0.01. Changes in direction also mark

69

Chapter 6 Mouse

segment boundaries. The value was determined to create segments which were
believed to originate from one finger motion (ie. moving the mouse wheel without
lifting the finger up or changing directions).
Three sets of segments are considered: scroll-up segments, scroll-down segments,
and the set of all segments. For each set, the mean and standard deviations of the
following features are taken:
Velocity The mean velocity of each segment is found by taking the mean point-

to-point velocity at each event in the segment.
Duration The duration of the segment is the time from the first event to the last

event.
Pointer motion The pointer motion is calculated by taking the point-to-point Eu-

clidean distance between mouse pointer coordinates. The total distance
traveled during the scroll segment is the sum of each point-to-point mo-
tion distance.

Scroll distance The scroll distance is the sum of scroll amounts in each event.
Time between segments The transition time between segments is taken as the time

between the first event in each segment (similar to a type 2 keystroke
transition).

Inter-segment pointer motion The mouse pointer distance is calculated between seg-
ments by taking the Euclidean distances between the first event of each
segment.

Number of segments The number of unique segments found in the session.
Number of long segments The number of segments containing at least 2 events.
Number of short segments The number of segments containing only 1 event.
The resulting feature vectors contain 45 values, from the 15 features above, (mean
and std for 6 of the above features), and 3 sets of segments. Some of the features
may become system dependent, especially for data collected within a web browser.
There is no industry standard for the scroll amount and direction, so care must be
taken to avoid environmental dependencies. The experimental datasets used in this
chapter were collected with homogenous systems to determine the performance of
the model.

6.5. Experimental results

6.5.1. Fixed motion tasks

Dataset C was used to get baseline results from a dataset with minimal environ-
mental factors. Since each user was directed to perform a certain task for data

70

6.5 Experimental results

collection, the results of the motion feature set on this data are not ideal (since
some of the features are based on the presence or absence of certain motions a user
might perform). Figure 6.4 shows the ROC curve for the motion-only feature set on
C. The EER was found to be 11.6% and the error rate of each user was roughly the
same at the EER.

Figure 6.4.: ROC curve for motion features on C

6.5.2. Unrestrained motion in a single domain

The performance of the motion features described in this chapter were tested on
datasets B1, B2, B3, and B4, which consist of unrestrained motion for 4 different
tasks. Table 6.1 shows the EER for a reduced set of 10 users in each dataset to
compare to the results of the baseline experiment. The EER was also found with
the maximum number of users available, to give an indication of how well the motions
features scale with population size.

Dataset Description Users EER

B1 Edit paragraph 10 23%
46 32%

B2 Web browsing 10 18%
40 31%

B3 Solitaire 10 17%
19 16%

B4 Star bubbles 10 15%
21 19%

Table 6.1.: Baseline motion EER

Since each of the 4 datasets contain different users, the intersection of users across
the 4 datasets was taken to get users who completed 6 sessions for each task. This
set of 16 common users are used in all of the following experiments.

71

Chapter 6 Mouse

The EER of motion-only features was found for the common users in each dataset.
The scroll, click, and keystroke features were then introduced to create multimodal
feature vectors. The performance of motion only vs. multimodal features is found
in Table 6.2. For the 4 experiments, the leave-one-out cross validation method was
used to validate the model, using feature vectors from a single dataset (or a single
task).

Dataset Description Motion EER Multimodal EER
B1 Edit paragraph 24% 14%
B2 Web browsing 20% 7%
B3 Solitaire 17% 6%
B4 Star bubbles 21% 7%

Average 20.5% 8.5%
Std dev 2.5% 3.2%

Table 6.2.: 16 common users motion and multimodal performance in a single task

6.5.3. Unrestrained motion in multiple domains

To test the robustness of the motion and multimodal features across multiple do-
mains, the authentication process was simulated using two different tasks as refer-
ence sets and query sets, respectively. For each experiment, the feature vectors from
the query dataset are used to authenticate users who have enrolled sessions in the
reference dataset. The set of 16 common users was used so that each user had 6
sessions enrolled from each task. The EER of each of the 24 experiments are found
in Table 6.3.
Finally, the system was tested using all of the enrolled sessions from each of the 16
common each user across 4 different tasks. This is the most realistic scenario, since
the data from each task is used. For each authentication, a user’s feature vector is
left out and compared to the remaining feature vectors from that task, as well as
the feature vectors enrolled from every other task. The ROC curve and error rates
as a function of m are shown in Figure 6.5, with an EER of 3.9%.

6.6. Conclusion

Using only motion features on unrestrained input resulted in an error rate which was
roughly twice as much as a fixed input task. This shows the difficulty in quantifying
unrestrained mouse input, in contrast to the modest increases in error rate when
dealing with unrestrained keystroke input. Though the input from the mouse is
generally observed with e higher frequency than keystroke, an authentication system
which relies on motion only will generally perform worse than keystroke. It may

72

6.6 Conclusion

Reference Query Motion EER Multimodal EER
B1 B2 39% 47%
B1 B3 43% 44%
B1 B4 43% 43%
B2 B1 37% 44%
B2 B3 36% 36%
B2 B4 41% 32%
B3 B1 42% 43%
B3 B2 41% 38%
B3 B4 22% 22%
B4 B1 38% 41%
B4 B2 39% 36%
B4 B3 32% 27%
Average 37.75% 37.75%
Std dev 5.6% 7.3%

Table 6.3.: Motion and multimodal performance across multiple domains

be the case that the atomic actions that a user intends when interacting with the
application actually occur with a much lower frequency. In this case, events (actions)
would be the movement from one location on the screen to another. In addition to
this, the motion track contains more noise than the keystroke biometric.
Combining mouse and keystroke biometrics resulted in moderate performance on
unrestrained input, with an EER of 3.9% when all of a user’s sessions from mul-
tiple tasks are considered. Trying to authenticate a user with data enrolled from
heterogenous tasks may not be possible with this approach, as the average EER in
this case was found to be 37.75%. Similar tasks (using sessions from each of the two
games, B3 and B4) did perform better than average, with the EER ranging from
20-30% with motion and multimodal features. This might suggest that in certain
scenarios, it may be possible to authenticate a user performing novel tasks with the
mouse. The EER was also more consistent when considering only motion across het-
erogenous domains, with a standard deviation of 5.6% versus 7.3% for multimodal
features. This is an indication that features besides motion may be less reliable
when trying to authenticate a user performing novel tasks.
Future work should better identify the features which perform well across multiple
domains. A more diverse dataset with a larger population is desirable, since the
number of enrolled sessions from users performing various tasks was limited in this
study. Simple concatetaning the feature vectors from multiple biometris is also not
ideal. Combining multiple biometrics when authenticating users in different domains
is also a topic of interest.

73

Chapter 6 Mouse

(a) ROC curve (b) FRR and FAR as a function of m

Figure 6.5.: Common user multimodal performance for all tasks

74

Acknowledgments

We thank the student teams in the masters level projects course that contributed
to this effort over recent years

75

A. Keystroke features

77

Chapter A Keystroke features

Table A.1.: Keystroke features

78

B. Stylometry features

Table B.1.: Stylometry features

79

C. Linear regression fallback
functions

Table C.1.: Linear regression functions for each key

81

D. Summary of Prior Authorship
Attribution Stylometry Studies

Table D.1.: Summary of Prior Authorship Attribution Stylometry Studies

D.1. Stylometry prior work references

1. S. Afroz, M. Brennan, and R. Greenstadt. Detecting hoaxes, frauds, and
deception in writing style online. Proc. 2012 IEEE Sym. Security and Privacy.
IEEE Computer Soc., Wash. DC, 461-475, 2012.

2. B. Allison and L. Guthrie. Authorship attribution of e-mail comparing classi-
fiers cver a new corpus for evaluation, Proc. LREC’08, 2008.

83

Chapter D Summary of Prior Authorship Attribution Stylometry Studies

3. M.Cristani, et al. Conversationally-inspired stylometric features for author-
ship attribution in instant messaging. Proc. 20th ACM Int. Conf. Multime-
dia. NY, 1121-1124, 2012.

4. M. Corney, O. de Vel, A. Anderson, and G. Mohay. Gender-preferential text
mining of e-mail discourse. Proc. 18th Annual Computer Security App. Conf.,
Las Vegas, NV, Dec 2002.

5. O. de Vel. Mining e-mail authorship. Proc. KDD-2000 Workshop on Text
Mining, Boston, Aug 2000.

6. O. de Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content for
author identification forensics. ACM SIGMOD Record, 30(4):55, Dec 2001.

7. O.Feiguenia and G.Hirst. Authorship attribution for small texts: literary and
forensic experiments. Proc. 30th Int.Conf. Special Int. Group. Info Retrieval
(SIGIR), 2007.

8. S. Feng, R. Banerjee, and Y. Choi. Syntactic stylometry for deception detec-
tion. Proc. 50th Annual Meeting Assoc. Comp. Linguistics: Short Papers,
Assoc. Comp. Ling., Stroudsburg, PA, 2: 171-175, 2012.

9. M. Gamon. Linguistic correlates of style: authorship classification with deep
linguistic analysis features. Proc. 20th Int. Conf. Comp. Ling. (COLING
’04). Assoc. Comp. Ling., Morristown, NJ, 611-617, 2004.

10. E. Goldman and A. Allison. Using grammatical markov modes for stylometric
analysis. Stanford Univ. Tech. Report.

11. G. Hirst and O. Feiguina. Bigrams of syntactic labels for authorship discrim-
ination of short texts. Literary and Linguistic Computing, 22(4): 405-417,
2007.

12. D. Hoover. Multivariate analysis and the study of style variation. Literary
and Linguistic Computing, 18(4): 341-60, 2003.

13. D. Hoover. Statistical stylistics and authorship attribution: an empirical in-
vestigation. Literary and Linguistic Computing, 16: 421-44, 2001.

14. F. Iqbal, R. Hadjidj, B. Fung, and M. Debbabi. A novel approach of mining
write-prints for authorship attribution in e-mail forensics. Digtal Investigation,
5: 42-51, 2008.

15. F. Iqbal, L. Khan, C. Benjamin, and M. Debbabi. E-mail authorship ver-
ification for forensic investigation. Proc. 2010 ACM Symposium Applied
Computing (SAC ’10). ACM, New York, NY, 1591-1598, 2010.

16. V. Keselj, F. Peng, N. Cerone, and C. Thomas. N-gram-based author pro-
files for authorship attribution. Proc. Conf. Pacific Assoc. Comp. Ling.,
PACLING’03, Nova Scotia, 255-264, 2003.

84

D.1 Stylometry prior work references

17. M. Koppel and J. Schler. Authorship verification as a one-class classification
problem. ICML ’04 Proc. .21st Int. Conf. Machine Learning, New York,
2004.

18. M. Koppel and J. Schler. Exploiting stylistic idiosyncrasies for authorship
attribution. Proc. IJCAI’03 Workshop Comp. Approaches to Style Analysis
and Synthesis, 69-72, 2003.

19. R. Layton, P. Watters, and R. Dazeley. Authorship attribution for twitter in
140 characters or less. Second Cybercrime and Trustworthy Comp. Workshop,
1-8, 2010

20. J. Li, R. Zheng, and H. Chen. From fingerprint to writeprint. Comm. ACM,
49(4): 76-82, 2006.

21. K. Luyckx and W. Daelemans. Authorship attribution and verification with
many authors and limited data. Proc. 22nd Int. Conf. Comp. Ling., COLING
’08, Assoc. Comp. Ling., NJ, 1: 513-520, 2008.

22. K. Luyckx and W. Daelemans. Shallow text analysis and machine learning for
authorship attribution. Proc. 15th Meeting Comp. Ling. of the Netherlands,
2005.

23. T. Mustafa, N. Mustapha, M. Azmi, and N. Sulaiman. Computational sty-
lometic approach based on frequent word and frequent pair in text mining
authorship attrib. IJCSNS Int. J. Comp. Sci. Net. Sec., 9-3, 2009.

24. A. Narayanan, A. Paskov, H. Gong, N.Z. Bethencourt, J. Stefanov, E. Shin,
E.C.R. Song, D. On the feasibility of internet-scale author identification. IEEE
Symp. Security and. Privacy, 300-314, 2012.

25. D. Pavelec, L.S. Oliveira, E. Justino, F.D. Nobre Neto, and L.V. Batista.
Compression and stylometry for author identification. Int. Joint Conf. Neural
Networks, 2445-2450, 2009.

26. M. Popescu and L. Dinu. Comparing statistical similarity measures for stylistic
multivariate analysis. Proc. RANLP 2009, Borovets, Bulgaria, 2009.

27. S. Raghavan, A. Kovashka, and R. Mooney. Authorship attribution using
probabilistic context-free grammars. Proc. ACL 2010 Conf. Short Papers,
CLShort ’10, Assoc. Comp. Ling., PA, 38-42, 2010.

28. U. Stanczyk and K. Cyran. Machine learning approach to authorship attri-
bution of literary texts. Int. J. Applied Mathematics and Informatics, 1(4),
2007.

29. J. Sun, Z. Yang, P. Wang, and S. Liu. Variable length character n-gram ap-
proach for online writeprint identification. Int.Conf. Multimedia Info. Netw.
Sec. (MINES), Nanjing, Jiangsu, 486-490, 2010.

30. J. Sun, Z. Yang, P. Wang, L. Liu, and S. Liu. Feature selection for online
writeprint identification using hybrid genetic algorithm. Int. Symp. Comp.
Intel. and Design (ISCID), Hangzhou, 76-79, 2010.

85

Chapter D Summary of Prior Authorship Attribution Stylometry Studies

31. F. Tan and R. Tsai. Authorship identification for online text. Proc. 2010
Int. Conf. Cyberworlds (CW ’10). IEEE Computer Society, Washington, DC,
155-162, 2010.

32. N. Tsimboukakis and G. Tambouratzis. A comparative study on authorship
attribution classification tasks using both neural network and statistical meth-
ods. Neural Comp. Appl., 19(4): 573-582, 2009.

33. H. Van Halteren. Linguistic profiling for author recognition and verification.
Proc. 42nd Annual Meeting Assoc. Comp.Ling, Stroudsburg, PA, 199-206,
2004.

34. R. Zheng, J. Li, H. Chen, and Z. Huang. A framework for authorship identifi-
cation of online messages: writing-style features and classification techniques.
J. Am. Soc. Info. Science and Tech., Feb 2006.

35. R. Zheng, Y. Qin, Z. Huang, and H. Chen. Authorship Analysis in Cybercrime
Investigation. Intel. Security Informatics, Hsinchun Chen et al., Eds., Springer
Berlin Heidelberg, 2665: 59-73, 2003.

86

Bibliography

[1] Higher education opportunity act (heoa) of 2008. Accessed May 2012.

[2] Law of large numbers. (Accessed October 2013).

[3] Project gutenberg. (Accessed September 2012).

[4] Livia CF Araujo, Luiz HR Sucupira Jr, Miguel Gustavo Lizarraga, Lee Luan
Ling, and João Baptista T Yabu-Uti. User authentication through typing
biometrics features. Signal Processing, IEEE Transactions on, 53(2):851–855,
2005.

[5] Ned Bakelman, John V Monaco, Sung-Hyuk Cha, and Charles C Tappert.
Keystroke biometric studies on password and numeric keypad input. 2013.

[6] Dieter Bartmann, Idir Bakdi, and Michael Achatz. On the design of an authen-
tication system based on keystroke dynamics using a predefined input text.
International Journal of Information Security and Privacy (IJISP), 1(2):1–12,
2007.

[7] Henry Beker and Fred Piper. Cipher systems: the protection of communications.
Northwood Books London, 1982.

[8] Steven S Bender and Howard J Postley. Key sequence rhythm recognition
system and method, April 17 2007. US Patent 7,206,938.

[9] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. User authenti-
cation through keystroke dynamics. ACM Transactions on Information and
System Security (TISSEC), 5(4):367–397, 2002.

[10] Shane Bergsma, Matt Post, and David Yarowsky. Stylometric analysis of sci-
entific articles. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 327–337. Association for Computational Linguistics, 2012.

[11] Saleh Bleha, Charles Slivinsky, and Bassam Hussien. Computer-access security
systems using keystroke dynamics. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 12(12):1217–1222, 1990.

[12] Ruud M. Bolle, Jonathan Connell, Sharath Pankanti, Nalini K. Ratha, and
Andrew W. Senior. Guide to Biometrics (Springer Professional Computing).
Springer, 2010.

87

Bibliography

[13] Sung-Hyuk Cha and Sargur N Srihari. Writer identification: statistical analysis
and dichotomizer. In Advances in Pattern Recognition, pages 123–132. Springer,
2000.

[14] Sungzoon Cho, Chigeun Han, Dae Hee Han, and Hyung-Il Kim. Web-based
keystroke dynamics identity verification using neural network. Journal of or-
ganizational computing and electronic commerce, 10(4):295–307, 2000.

[15] Ali Darwish and Michel Pasquier. Biometric identification using the dynamic
features of the eyes. In Biometrics: Theory, Applications and Systems, 2013.

[16] George Doddington, Walter Liggett, Alvin Martin, Mark Przybocki, and Dou-
glas Reynolds. Sheep, goats, lambs and wolves: A statistical analysis of speaker
performance in the nist 1998 speaker recognition evaluation. Technical report,
DTIC Document, 1998.

[17] Joao Ferreira and Henrique Santos. Keystroke dynamics for continuous access
control enforcement. In Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2012 International Conference on, pages 216–223. IEEE,
2012.

[18] Eric Flior and Kazimierz Kowalski. Continuous biometric user authentication
in online examinations. In Information Technology: New Generations (ITNG),
2010 Seventh International Conference on, pages 488–492. IEEE, 2010.

[19] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song.
Touchalytics: On the applicability of touchscreen input as a behavioral bio-
metric for continuous authentication. 2012.

[20] Romain Giot, Mohamad El-Abed, and Christophe Rosenberger. Greyc
keystroke: a benchmark for keystroke dynamics biometric systems. In Bio-
metrics: Theory, Applications, and Systems, 2009. BTAS’09. IEEE 3rd Inter-
national Conference on, pages 1–6. IEEE, 2009.

[21] Romain Giot, Mohamad El-Abed, and Christophe Rosenberger. Keystroke
dynamics with low constraints svm based passphrase enrollment. In Biometrics:
Theory, Applications, and Systems, 2009. BTAS’09. IEEE 3rd International
Conference on, pages 1–6. IEEE, 2009.

[22] Daniele Gunetti and Claudia Picardi. Keystroke analysis of free text. ACM
Transactions on Information and System Security (TISSEC), 8(3):312–347,
2005.

[23] Frederick Jelinek. Interpolated estimation of markov source parameters from
sparse data. Pattern recognition in practice, 1980.

[24] L Jin, X Ke, R Manuel, and M Wilkerson. Keystroke dynamics: A software
based biometric solution. In Proc. 13th USENIX Security Symposium, 2004.

[25] Dan Jurafsky, James H Martin, Andrew Kehler, Keith Vander Linden, and
Nigel Ward. Speech and language processing: An introduction to natural lan-

88

Bibliography

guage processing, computational linguistics, and speech recognition, volume 2.
MIT Press, 2000.

[26] Slava Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. Acoustics, Speech and Signal Processing,
IEEE Transactions on, 35(3):400–401, 1987.

[27] Ricardo Kawase, George Papadakis, Eelco Herder, and Wolfgang Nejdl. Beyond
the usual suspects: context-aware revisitation support. In HT, pages 27–36,
2011.

[28] Preeti Khanna and M Sasikumar. Recognising emotions from keyboard stroke
pattern. International Journal of Computer Applications, 11(9), 2010.

[29] Kevin Killourhy and Roy Maxion. The effect of clock resolution on keystroke
dynamics. In Recent Advances in Intrusion Detection, pages 331–350. Springer,
2008.

[30] Kevin S Killourhy. A scientific understanding of keystroke dynamics. Technical
report, DTIC Document, 2012.

[31] Kevin S Killourhy and Roy A Maxion. Comparing anomaly-detection algo-
rithms for keystroke dynamics. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on, pages 125–134. IEEE, 2009.

[32] BVK Vijaya Kumar. Correlation pattern recognition. Cambridge University
Press, 2005.

[33] John Leggett, Glen Williams, Mark Usnick, and Mike Longnecker. Dynamic
identity verification via keystroke characteristics. International Journal of Man-
Machine Studies, 35(6):859–870, 1991.

[34] Chen Change Loy, Weng Kin Lai, and Chee Peng Lim. Keystroke patterns
classification using the artmap-fd neural network. In Intelligent Information
Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007. Third Interna-
tional Conference on, volume 1, pages 61–64. IEEE, 2007.

[35] Chen Change LOY, Chee Peng LIM, and Weng Kin LAI. Pressure-based typing
biometrics user authentication using the fuzzy artmap neural network. In Pro-
ceeding of the 12th International Conference on Neural Information Processing,
2005.

[36] Anthony J Mansfield and James L Wayman. Best practices in testing and re-
porting performance of biometric devices. Centre for Mathematics and Scientific
Computing, National Physical Laboratory Teddington, Middlesex, UK, 2002.

[37] Roy A Maxion and Kevin S Killourhy. Keystroke biometrics with number-
pad input. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP
International Conference on, pages 201–210. IEEE, 2010.

[38] Arik Messerman, Tarik Mustafic, Seyit Ahmet Camtepe, and Sahin Albayrak.
Continuous and non-intrusive identity verification in real-time environments

89

Bibliography

based on free-text keystroke dynamics. In Biometrics (IJCB), 2011 Interna-
tional Joint Conference on, pages 1–8. IEEE, 2011.

[39] John V Monaco, Ned Bakelman, Sung-Hyuk Cha, and Charles C Tappert.
Recent advances in the development of a long-text-input keystroke biometric
authentication system for arbitrary text input. In Intelligence and Security
Informatics Conference (EISIC), 2013 European, pages 60–66. IEEE, 2013.

[40] Fabian Monrose, Michael K Reiter, and Susanne Wetzel. Password hardening
based on keystroke dynamics. International Journal of Information Security,
1(2):69–83, 2002.

[41] A. Newell. Unified Theories of Cognition. William James Lectures. Harvard
University Press, 1994.

[42] Sean Peisert, Ed Talbot, and Tom Kroeger. Principles of authentication. In
Proceedings of the 2013 workshop on New security paradigms workshop, pages
47–56. ACM, 2013.

[43] Anna Pereira, David L Lee, Harini Sadeeshkumar, Charles Laroche, Dan Odell,
and David Rempel. The effect of keyboard key spacing on typing speed, error,
usability, and biomechanics part 1. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 55(3):557–566, 2013.

[44] Kenneth Revett. Behavioral biometrics: a remote access approach. Wiley. com,
2008.

[45] Ricardo N Rodrigues, Glauco FG Yared, Carlos R do N Costa, João BT Yabu-
Uti, Fábio Violaro, and Lee Luan Ling. Biometric access control through nu-
merical keyboards based on keystroke dynamics. In Advances in Biometrics,
pages 640–646. Springer, 2005.

[46] Joseph Roth, Xiaoming Liu, Arun Ross, and Dimitris Metaxas. Biometric
authentication via keystroke sound.

[47] Abdul Serwadda and Vir V Phoha. Examining a large keystroke biometrics
dataset for statistical-attack openings. ACM Transactions on Information and
System Security (TISSEC), 16(2):8, 2013.

[48] Chao Shen, Zhongmin Cai, Xiaohong Guan, Youtian Du, and R Maxion. User
authentication through mouse dynamics. 2013.

[49] Tomer Shimshon, Robert Moskovitch, Lior Rokach, and Yuval Elovici. Contin-
uous verification using keystroke dynamics. In Computational Intelligence and
Security (CIS), 2010 International Conference on, pages 411–415. IEEE, 2010.

[50] Efstathios Stamatatos. A survey of modern authorship attribution meth-
ods. Journal of the American Society for information Science and Technology,
60(3):538–556, 2009.

[51] John C Stewart, John V Monaco, Sung-Hyuk Cha, and Charles C Tappert. An
investigation of keystroke and stylometry traits for authenticating online test

90

Bibliography

takers. In Biometrics (IJCB), 2011 International Joint Conference on, pages
1–7. IEEE, 2011.

[52] C. C. Tappert, S. Cha, M. Villani, and R. S. Zack. Keystroke biometric identifi-
cation and authentication on long-text input. Int. Journal Information Security
and Privacy (IJISP), 2010.

[53] Charles C Tappert, Sung-Hyuk Cha, Mary Villani, and Robert S Zack. A
keystroke biometric system for long-text input. International Journal of Infor-
mation Security and Privacy (IJISP), 4(1):32–60, 2010.

[54] Mary Villani, Charles Tappert, Giang Ngo, Justin Simone, H St Fort, and Sung-
Hyuk Cha. Keystroke biometric recognition studies on long-text input under
ideal and application-oriented conditions. In Computer Vision and Pattern
Recognition Workshop, 2006. CVPRW’06. Conference on, pages 39–39. IEEE,
2006.

[55] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence
classification. ACM SIGKDD Explorations Newsletter, 12(1):40–48, 2010.

[56] Neil Yager and Ted Dunstone. The biometric menagerie. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 32(2):220–230, 2010.

91

	Contents
	Abstract
	1 Introduction
	1.1 Authentication
	1.1.1 Types of threats

	1.2 Behavioral biometrics
	1.2.1 Human-computer interaction
	1.2.2 Cognition
	1.2.3 Sequence Classification
	1.2.4 Sequence source identification
	1.2.5 Authentication model evaluation

	1.3 Structure of this document

	2 Experimental Data
	2.1 Overview
	2.2 Keystroke and mouse
	2.2.1 Long free-text and fixed-text
	2.2.2 Short Fixed keystroke
	2.2.3 Multimodal tasks

	2.3 Mobile
	2.4 Additional datasets
	2.4.1 Keystroke RTI
	2.4.2 Web search history
	2.4.3 Eye movement

	3 Authentication Model
	3.1 Introduction
	3.2 Dichotomy model
	3.3 Model validation
	3.3.1 Receiver operating characteristic (ROC) curve
	3.3.2 Biometric menagerie

	4 Keystroke
	4.1 Introduction
	4.1.1 Related work
	4.1.2 Other factors to consider
	4.1.3 Placement on Newell's Time Scale
	4.1.4 Keystroke event models

	4.2 Statistical features
	4.2.1 Features for fixed-text

	4.3 Fallback
	4.3.1 Feature correlation
	4.3.2 Correlation based fallback table

	4.4 Bigram frequency
	4.5 Experimental Results
	4.5.1 Input type
	4.5.2 Free text population size and input length
	4.5.3 Short fixed text

	4.6 Conclusion

	5 Stylometry
	5.1 Introduction
	5.2 Features
	5.3 Experimental results: online test-takers
	5.4 Literature authorship
	5.4.1 Data collection
	5.4.2 Experimental results

	5.5 Conclusion

	6 Mouse
	6.1 Overview
	6.2 Preprocessing
	6.3 Sequence segmentation
	6.4 Features
	6.4.1 Motion
	6.4.2 Click
	6.4.3 Scroll

	6.5 Experimental results
	6.5.1 Fixed motion tasks
	6.5.2 Unrestrained motion in a single domain
	6.5.3 Unrestrained motion in multiple domains

	6.6 Conclusion

	Acknowledgments
	A Keystroke features
	B Stylometry features
	C Linear regression fallback functions
	D Summary of Prior Authorship Attribution Stylometry Studies
	D.1 Stylometry prior work references

	Bibliography

